高数大神来解吧
2个回答
2017-02-11 · 知道合伙人教育行家
关注
展开全部
先求第三个,
已知条件即为:
lim(x→0)[sin3x+x·f(x)]/x³=0
所以,
lim(x→0)[3+f(x)]/x²
=lim(x→0)[3x+x·f(x)]/x³
=lim(x→0)[sin3x+x·f(x)]/x³
+lim(x→0)(3x-sin3x)/x³
=0+lim(x→0)(3x-sin3x)/x³
=lim(x→0)(3-3cos3x)/(3x²)
【洛必达法则】
=lim(x→0)(9sin3x)/(6x)
【洛必达法则】
=lim(x→0)27cos3x/6
【洛必达法则】
=9/2
所以,
lim(x→0)[3+f(x)]=0
∴f(0)=lim(x→0)f(x)=-3
对lim(x→0)[3+f(x)]/x²应用洛必达法则,
lim(x→0)[3+f(x)]/x²
=lim(x→0)f'(x)/(2x)
=9/2
∴lim(x→0)f'(x)=0
∴f'(0)=lim(x→0)f'(x)=0
f''(0)=lim(x→0)[f'(x)-f'(0)]/(x-0)
=lim(x→0)f'(x)/x
=9
综上,
f(0)=-3,f'(0)=0,f''(0)=9
lim(x→0)[3+f(x)]/x²=9/2
已知条件即为:
lim(x→0)[sin3x+x·f(x)]/x³=0
所以,
lim(x→0)[3+f(x)]/x²
=lim(x→0)[3x+x·f(x)]/x³
=lim(x→0)[sin3x+x·f(x)]/x³
+lim(x→0)(3x-sin3x)/x³
=0+lim(x→0)(3x-sin3x)/x³
=lim(x→0)(3-3cos3x)/(3x²)
【洛必达法则】
=lim(x→0)(9sin3x)/(6x)
【洛必达法则】
=lim(x→0)27cos3x/6
【洛必达法则】
=9/2
所以,
lim(x→0)[3+f(x)]=0
∴f(0)=lim(x→0)f(x)=-3
对lim(x→0)[3+f(x)]/x²应用洛必达法则,
lim(x→0)[3+f(x)]/x²
=lim(x→0)f'(x)/(2x)
=9/2
∴lim(x→0)f'(x)=0
∴f'(0)=lim(x→0)f'(x)=0
f''(0)=lim(x→0)[f'(x)-f'(0)]/(x-0)
=lim(x→0)f'(x)/x
=9
综上,
f(0)=-3,f'(0)=0,f''(0)=9
lim(x→0)[3+f(x)]/x²=9/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询