pet质粒能在野生菌株中表达吗

 我来答
匿名用户
2017-03-07
展开全部
一、一个合格质粒的组成要素 复制起始位点Ori,即控制复制起始的位点.原核生物DNA 分子中只有一个复制起始点.而真核生物DNA 分子有多个复制起始位点. 抗生素抗性基因:可以便于加以检测,如Amp+ ,Kan+ 多l 克隆位点:MCS 克隆携带外源基因片段 P/E:启动子/增强子 Terms:终止信号 加poly(A)信号:可以起到稳定mRNA 作用 二、如何阅读质粒图谱 第一步:首先看Ori 的位置,了解质粒的类型(原核/真核/穿梭质粒) Ori 的箭头指复制方向,其他元件标注的箭头多指转录方向(正向). 第二步:再看筛选标记,如抗性,决定使用什么筛选标记: (1)Ampr:水解β -内酰胺环,解除氨苄的毒性. (2)tetr :可以阻止四环素进入细胞. (3)camr:生成氯霉素羟乙酰基衍生物,使之失去毒性. (4)neor(kanr):氨基糖苷磷酸转移酶,使G418(卡那霉素衍生物)失活. (5)hygr:使潮霉素β 失活. 第三步:看多克隆位点(MCS).它具有多个限制酶的单一切点,便于外源基因的插入.如果在这些位点外有外源基因的插入,会导致某种标志基因的失活,而便于筛选.决定能不能放目的基因以及如何放置目的基因. 第四步:再看外源 DNA 插入片段大小.质粒一般只能容纳小于10Kb 的外源DNA 片段.一般来说,外源DNA 片段越长,越难插入,越不稳定,转化效率越低. 第五步:是否含有表达系统元件,即启动子-核糖体结合位点-克隆位点-转录终止信号.这是用来区别克隆载体与表达载体.克隆载体中加入一些与表达调控有关的元件即成为表达载体.选用那种载体,还是要以实验目的为准绳. 相关概念: 启动子-核糖体结合位点-克隆位点-转录终止信号 启动子-促进DNA 转录的DNA 顺序,这个DNA 区域常在基因或操纵子编码顺序的上游,是DNA 分子上可以与RNApol 特异性结合并使之开始转录的部位,但启动子本身不被转录. 增强子/沉默子-为真核 l 基因组(包括真核病毒基因组)中的一种具有增强邻近基因转录过程的调控顺序.其作用与增强子所在的位置或方向无关.即在所调控基因上游或下游均可发挥作用.沉默子-负增强子,负调控序列. 核糖体结合位点/起始密码/SD 序列(Rbs/AGU/SDs):mRNA 有核糖体的两个结合位点,对于原核而言是AUG(起始密码)和SD 序列. l 转录终止顺序(终止子)/翻译终止密码子:结构基因的最后一个外显子中有一个 AATAAA 的保守序列,此位点 down-stream 有一段 GT 或 T 富丰区,这2部分共同构成 poly (A)加尾信号.结构基因的最后一个外显子中有一个 AATAAA 的保守序列,此位点 down- stream 有一段GT 或T 富丰区,这2部分共同构成poly(A)加尾信号. 三、载体及其分类 载体:即要把一个有用的基因(目的基因——研究或应用基因)通过基因工程手段送到生物细胞(受体细胞),需要运载工具(交通工具)携带外源基因进入受体细胞,这种运载工具就叫做载体(vector). P.S.基因工程所用的vector 实际上是DNA 分子,是用来携带目的基因片段进入受体细胞的DNA. 载体的分类 按功能分成:(1)克隆载体:都有一个松弛的复制子,能带动外源基因,在宿主细胞中复制扩增.它是用来克隆和扩增DNA 片段(基因)的载体.(所以有时实验时扩增效率低下,要注意是不是使用的严谨型载体)(2)表达载体:具有克隆载体的基本元件(ori,Ampr,Mcs 等)还具有转录/翻译所必需的DNA 顺序的载体. 按进入受体细胞类型分:(1)原核载体(2)真核载体(3)穿梭载体(sbuttle vector)指在两种宿主生物体内复制的载体分子,因而可以运载目的基因(穿梭往返两种生物之间). P.S. 穿梭质粒含原核和真核生物2个复制子,以确保两类细胞中都能扩增. 基因工程载体的3个特点: (一)都能独立自主的复制:载体DNA 分子中有一段不影响它们扩增的非必需区域,如 MCS,插在其中的外源DNA 片段,能被动的跟着载体一起复制/扩增,就像载体的正常成分一样. (二)都能便利的加以检测: 如载体的药物抗性基因,多是抗生素抗性基因,将受体细胞放在含有该抗生素培养板上培养生长时,只有携带这些抗性基因的载体分子的受体细胞才能存活. (三)都能容易进入宿主细胞中去,也易从宿主细胞中分离纯化出来. 四、载体的选择和制备 选择载体主要依据构建的目的,同时要考虑载体中应有合适的限制酶切位点.如果构建的目的是要表达一个特定的基因,则要选择合适的表达载体. 载体选择主要考虑下述3点: 1、 构建DNA 重组体的目的,克隆扩增/表达表达,选择合适的克隆载体/表达载体. 2、载体的类型: (1)克隆载体的克隆能力-据克隆片段大小(大选大,小选小).如小于10kb 选质粒. (2)表达载体据受体细胞类型-原核/真核/穿梭,E.coli/哺乳类细胞表达载体. (3)对原核表达载体应该注意3点: ①选择合适的启动子及相应的受体菌; ②用于表达真核蛋白质时注意克服4个困难和阅读框错位; ③表达天然蛋白质或融合蛋白作为相应载体的参考. 3、载体 MCS 中的酶切位点数与组成方向因载体不同而异,适应目的基因与载体易于链接,不产生阅读框架错位.选用质粒(最常用)做载体的4点要求: ①选分子量小的质粒,即小载体(1-1.5kb)→不易损坏,在细菌里面拷贝数也多(也有大载体); ②一般使用松弛型质粒在细菌里扩增不受约束,一般10个以上的拷贝,而严谨型质粒小于10个. ③必需具备一个以上的酶切位点,有选择的余地; ④必需有易检测的标记,多是抗生素的抗性基因,不特指多位Ampr(试一试). 无论选用哪种载体,首先都要获得载体分子,然后采用适当的限制酶将载体DNA 进行切 割,获得分子,以便于与目的基因片段进行连接. 二、pET32a(+)自身载体表达的片段大小 The expected fusion protein expressed encoded by just the pET-32a(+) vector alone would be around 20.4 kDa. The Trx-tag by itself would contribute 12kDa. The rest is due to the two His-tags (0.8kDa each) and the S-tag (1.7kDa). The remaining 5.1kDa is due to the intervening(?) 54 amino acids between the tags and until the stop codon. 三、pET32系列载体的载体序列地址 四、pET 系列载体阅读方法 ori 是复制起始点,细的黑箭头是几个不同的转录区,其箭头方向不同,说明每个表达产物(如kan 抗性基因、LacI 等)都有独立的promoter,有时与T7 promoter 方向相反.粗的黑箭头是MCS,用于目的基因的插入,箭头方向表明目的基因的转录方向,它的转录方向可以与其它几个不同的转录区相同,也可以不同,如 Kan 抗性基因、LacI 的方向是一样的,可能与调控相关,不同的载体是不一样的.一个载体可只看它的启动子到终止子那一段,其它的可以考虑少些. 五、pET 表达菌株的相关信息 ( DE3 )指宿主为 λ DE3 溶原菌,其染色体上带有一拷贝由 lacUV5 启动子控制的 T7 RNA 聚合酶基因.这类菌株适用于从克隆到 pET 载体的目标基因生产蛋白.命名为 pLysS 和 pLysE 的宿主菌带有编码 T7 溶菌酶(为 T7 RNA 聚合酶的天然抑制物)的 pET 相容性质粒.带有 pLysS 的细胞产生少量溶菌酶,而 pLysE 宿主菌产生更大量酶.这些菌株用于在诱导前抑制 T7 RNA 聚合酶的基础表达,这样可以稳定编码影响细胞生长和活力的目标蛋白的 pET 重组体.带有 pLacI 的宿主菌产生额外的抑制 pETBlue 和 pTriEx 载体基础表达的 lac 阻遏蛋白. λ DE3 溶原化试剂盒用于制备其它遗传背景的新表达宿主菌. AD494 菌株为硫氧还蛋白还原酶 ( trxB ) 突变菌株,能够在胞浆内形成二硫键,提供了生产正确折迭的活性蛋白的潜力. TrxB 突变可用卡那霉素选择,因此该菌株建议用于带氨苄抗性标记 bla 的质粒. B834 为 BL21 的亲本菌株.这些蛋白酶缺陷宿主菌为甲硫氨酸营养缺陷型,可用 35 S- 甲硫氨酸和硒代甲硫氨酸对目标蛋白进行高特异活性标记,从而用于结晶学研究. BL21 应用最广的宿主菌来源,具有 lon 和 ompT 蛋白酶缺陷的优点. BL21 TrxB 菌株在蛋白酶缺陷 BL21 背景上具有与 AD494 菌株相同的硫氧还蛋白还原酶突变 ( trxB ) .由于 trxB 宿主有利于胞浆内二硫键形成,它们的使用可增加正确折迭的蛋白组分. TrxB 突变可用卡那霉素选择,因此该菌株建议用于带氨苄抗性标记 bla 的质粒. BLR 为 BL21 的 recA - 衍生菌株,能够改善质粒单体产量,有助于稳定含有重复序列或其产物能够引起 DE3 噬菌体丢失的目标质粒. HMS174 菌株在 K-12 背景上提供了 recA 突变.与 BLR 一样,这些菌株能够稳定其产物能够引起 DE3 噬菌体丢失的某些目标基因. NovaBlue 适合 用作初始克隆宿主菌的 K-12 菌株,具有高转化效率、蓝 / 白斑筛选能力(与合适质粒)和导致优质质粒 DNA 高产的 recA endA 突变.由于存在 F 附加体编码的 lacI q 阻遏蛋白, NovaBlue 的 DE3 溶原菌是一个非常有用的严紧型宿主菌. Origami 为 K-12 衍生的宿主菌,硫氧还蛋白还原酶突变 ( trxB ) 和谷胱甘肽还原酶 ( gor ) 基因均为突变,能够大大增强胞浆内二硫键的形成.研究表明即使总体表达水平相似, Origami ( DE3 )表达的活性蛋白比其它宿主菌高 10 倍以上. Origami 宿主菌与氨苄抗性质粒相容,可用于 pET-32 载体,硫氧还蛋白标签能够进一步增强在胞浆内形成二硫键. TrxB 和 gor 突变可分别用卡那霉素和四环素选择,因此该菌株建议用于带氨苄抗性标记 bla 的 pET 质粒. Origami B 宿主菌来源于 BL21 lacZY 突变株,还带有与原始 Origami 菌株相同的 TrxB / gor 突变. Origami B 菌株集 BL21 、 Tuner 和 Origami 宿主菌的优点于一体. TrxB 和 gor 突变可分别用卡那霉素和四环素选择,因此该菌株建议用于带氨苄抗性标记 bla 的 pET 质粒. Rosetta 宿主菌从 BL21 衍生而来,可增强带有大肠杆菌稀有密码子的真核蛋白的表达.该菌株通过一个相容性氯霉素抗性质粒补充密码子 AUA 、 AGG 、 AGA 、 CUA 、 CCC 和 GGA 的 tRNAs .这样 Rosetta 菌株提供了“万能”的翻译,从而避免因大肠杆菌密码子使用频率导致的表达限制. tRNA 基因由它们的天然启动子驱动.在 Rosetta ( DE3 ) pLysS 和 Rosetta ( DE3 ) pLacI 中,稀有 tRNA 基因存在于分别带有 T7 溶菌酶和 lac 阻遏基因的同一质粒上. Tuner 菌株为 BL21 的 lacZY 缺失突变株,能够调整培养物中所有细胞的蛋白表达水平. lac 通透酶( lacY )突变使得 IPTG 均匀进入群体所有细胞,从而具有浓度依赖、水平均一的诱导表达.通过调整 IPTG 浓度,表达可从极低水平调节到极强、完全诱导的表达水平(通常与 pET 载体相关).低水平表达有时可能增强难表达蛋白的溶解性和活性. Tuner ( DE3 ) pLacI 菌株与 pETBlue 和 pTriEx 载体的表达相容.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式