不定积分下1/根号下(x^2+a^2)dx

 我来答
xuzhouliuying
高粉答主

2017-01-09 · 繁杂信息太多,你要学会辨别
知道顶级答主
回答量:5.4万
采纳率:86%
帮助的人:2.4亿
展开全部
令x=atanu,则u=arctan(x/a)
∫[1/√(x²+a²)]dx
=∫[1/√(a²tan²u+a²)]d(atanu)
=∫cosu·sec²udu
=∫secudu
=ln|secu+tanu| +C
=ln|√(x²+a²)/a +x/a| +C
=ln|[√(x²+a²)+x]/a| +C
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
茹翊神谕者

2020-10-04 · 奇文共欣赏,疑义相与析。
茹翊神谕者
采纳数:3365 获赞数:25123

向TA提问 私信TA
展开全部

可以使用换元法,

详情如图所示,有任何疑惑

欢迎追问

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
魔方小涛
2018-01-07
知道答主
回答量:8
采纳率:0%
帮助的人:8321
引用xuzhouliuying的回答:
令x=atanu,则u=arctan(x/a)
∫[1/√(x²+a²)]dx
=∫[1/√(a²tan²u+a²)]d(atanu)
=∫cosu·sec²udu
=∫secudu
=ln|secu+tanu| +C
=ln|√(x²+a²)/a +x/a| +C
=ln|[√(x²+a²)+x]/a| +C
展开全部
令x=atanu,则u=arctan(x/a)
∫[1/√(x²+a²)]dx
=∫[1/√(a²tan²u+a²)]d(atanu)
=∫cosu·sec²udu
=∫secudu
=ln|secu+tanu| +C
=ln|√(x²+a²)/a +x/a| +C
=ln|[√(x²+a²)+x]/a| +C
=ln|[√(x²+a²)+x]| +C(C-lna依然是常数C)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 3条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式