f(x)在[0,正无穷)可导,f(0)=0,0≤f'(x)≤f(x),求证f(x)恒等于0
1个回答
展开全部
因为f(x)在x=0处可导,故f(x)在x=0处连续.既有:
lim
x→0+
f(x)=
lim
x→0−
f(x)=f(0)=0;
lim
x→0+
F(x)=
lim
x→0+
f(x)
x
=
lim
x→0+
f'(x)(洛必达法则)
lim
x→0−
=f'(0)≠0;
lim
x→0−
F(x)=
lim
x→0−
f(x)
x
=
lim
x→0−
f'(x)(洛必达法则)
=f'(0)≠0;
因此:
lim
x→0+
F(x)=
lim
x→0−
F(x).
即:F(x)在x=0时,左右极限都相等.
又F(0)=f(0)=0;
即:F(x)在x=0处极限值不等于F(0);
故为间断点,又因为左右极限都相等,所以为第一类间断点.
lim
x→0+
f(x)=
lim
x→0−
f(x)=f(0)=0;
lim
x→0+
F(x)=
lim
x→0+
f(x)
x
=
lim
x→0+
f'(x)(洛必达法则)
lim
x→0−
=f'(0)≠0;
lim
x→0−
F(x)=
lim
x→0−
f(x)
x
=
lim
x→0−
f'(x)(洛必达法则)
=f'(0)≠0;
因此:
lim
x→0+
F(x)=
lim
x→0−
F(x).
即:F(x)在x=0时,左右极限都相等.
又F(0)=f(0)=0;
即:F(x)在x=0处极限值不等于F(0);
故为间断点,又因为左右极限都相等,所以为第一类间断点.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询