交换∫(0-2π)dx∫(0-sinx)f(x,y)dy的积分次序。

 我来答
百度网友c085806
2019-02-02 · TA获得超过1787个赞
知道答主
回答量:31
采纳率:50%
帮助的人:16.8万
展开全部

结果为:

过程如下:

扩展资料:

二元重积分∫(a-b)dx∫(c-g(x))f(x,y)dy的积分次序交换方法:

1、若y的积分上界g(x)在x的积分区域内不单调,将x的积分区域划分成使g(x)单调的区域。

2、在各区域进行积分次序交换,如某区间为{(x,y)|a≤x≤b,c≤y≤g(x)},且g(x)在[a,b]单调增,则其可视为{(x,y)|c≤y≤g(b),t(y)≤x≤b}上进行积分,其中t(y)是g(x)的反函数,故交换次序后变为∫(c-g(b))dy∫(t(y)-b)f(x,y)dx.

例题:变换∫(0-1)dx∫(0-x)f(x,y)dy的积分次序。

解答:积分区域为{(x,y)|0≤x≤1,0≤y≤x},等同于{(x,y)|0≤y≤1,y≤x≤1},故有

姜心1998
高粉答主

推荐于2019-09-01 · 关注我不会让你失望
知道小有建树答主
回答量:377
采纳率:100%
帮助的人:11.5万
展开全部

交换∫(0-2π)dx∫(0-sinx)f(x,y)dy的积分次序过程如图:

思想:π-arcsiny≤x是由sinx≤y变过来的,因为 0≤y≤1所以arcsiny取值范围是(0,2/π),而 2/π≤x

≤π,所以π-arcsiny≤x≤π

扩展资料

求积分一般要运用的定理:

1、设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。

2、设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。

3、设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。

4、牛顿-莱布尼茨公式:如果f(x)是[a,b]上的连续函数,并且有F′(x)=f(x),那么

用文字表述为:一个定积分式的值,就是原函数在上限的值与原函数在下限的值的差。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
倾瑶茉韵586
推荐于2019-08-26 · TA获得超过4974个赞
知道小有建树答主
回答量:35
采纳率:92%
帮助的人:3.2万
展开全部

显然这是在sin(x)曲线与x轴共同围出的面积上进行积分。

对于y的积分限就是[-1,1]

x的积分限本来应当是arcsin(y),但要保证x取值范围在[0,2π],而arcsin(y)在[-1,1]的值域是[-π/2,π/2],因此,x的积分限应当是[π/2+arcsin(y), 3π/2+arcsin(y)]和[3π/2+arcsin(y), 5π/2+arcsin(y)]。

  1. 本题的积分次序调换后,反函数的表示方法,要分区间分别写出;

  2. 具体过程,请参看下面的图片解答;

【反正弦函数】

  1. 在数学中,反三角函数(偶尔也称为弓形函数(arcus functions),反向函数(antitrigonometric functions)或环形函数(cyclometric functions))是三角函数的反函数(具有适当的限制域)。 具体来说,它们是正弦,余弦,正切,余切,正割和辅助函数的反函数,并且用于从任何一个角度的三角比获得一个角度。 反三角函数广泛应用于工程,导航,物理和几何。

  2. 反正弦函数(反三角函数之一)为正弦函数y=sinx(x∈[-½π,½π])的反函数,记作y=arcsinx或siny=x(x∈[-1,1])。由原函数的图像和它的反函数的图像关于一三象限角平分线对称可知正弦函数的图像和反正弦函数的图像也关于一三象限角平分线对称。

【公式】

  1. 用x表示自变量,用y表示因变量(函数值)时,正弦函数的反函数叫做反正弦函数,记作:

【交换积分次序的基本具体步骤】

  1. 作出积分区域。

  2. 看是先对x还是先对y积分,如果,先对x积分,则作一条平行于x轴的直线穿过积分区域,与积分区域的交点就是积分上下限;同理,如果是先对y积分,就作一条平行于y轴的直线穿过积分上下限。

  3. 交换积分次序的时候,根据积分区域的不同,可能会涉及到,把两个积分合成一个积分,也可能会把一个积分分成两个积分,具体依积分区域而定。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
生新exe
2019-06-05
知道答主
回答量:1
采纳率:0%
帮助的人:736
展开全部
有可能你不太理解的就是交换之后对于x积分的上下限问题。这需要把原来的x=arcsiny在(0,1)上的图像分成四个部分,这四个部分分别为x=arcsiny,x=π-arcsiny……这四个都是确定的函数(一个y对应一个x),后面三个是通过反正弦函数平移、翻折所变换过来的。(愚见,仅供理解)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式