展开全部
好的LZ
虽然你标题在说导数不等式问题.
但是你老师丢给你这些结论,似乎是告诉你用放缩法求解不等式,不关导数什么事...
令e^(x-1)=t
原不等谨滑纯式左边变为
t^2-tlnx-x
≥t^2-t(x-1)-x
=(t-x)(t+1)
=(e^(x-1)-x)(e^(x-1)+1)----(a)
由于e^x≥x+1
这就是说 e^(x-1)≥x
由祥咐于e^x > 1+x+x^2/2
这就是说e^(x-1)>1+(x-1)+(x-1)^2/2=(x^2+1)/2
这个不等式(a)的2个因式中,第一个因式
(e^(x-1)-x)≥x-x=0
第让虚二个因式
(e^(x-1)+1)=(x^2+1)/2+1=(x^2+3)/2>0
所以
e^(2x-2)-e^(x-1)lnx-x≥(e^(x-1)-x)(e^(x-1)+1)>0
像这样,找到了中间体,或者俗称跳板的(e^(x-1)-x)(e^(x-1)+1) 解不等式法就是放缩法
虽然你标题在说导数不等式问题.
但是你老师丢给你这些结论,似乎是告诉你用放缩法求解不等式,不关导数什么事...
令e^(x-1)=t
原不等谨滑纯式左边变为
t^2-tlnx-x
≥t^2-t(x-1)-x
=(t-x)(t+1)
=(e^(x-1)-x)(e^(x-1)+1)----(a)
由于e^x≥x+1
这就是说 e^(x-1)≥x
由祥咐于e^x > 1+x+x^2/2
这就是说e^(x-1)>1+(x-1)+(x-1)^2/2=(x^2+1)/2
这个不等式(a)的2个因式中,第一个因式
(e^(x-1)-x)≥x-x=0
第让虚二个因式
(e^(x-1)+1)=(x^2+1)/2+1=(x^2+3)/2>0
所以
e^(2x-2)-e^(x-1)lnx-x≥(e^(x-1)-x)(e^(x-1)+1)>0
像这样,找到了中间体,或者俗称跳板的(e^(x-1)-x)(e^(x-1)+1) 解不等式法就是放缩法
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询