数列1.在数列{an}中,a1=1,且满足an-an-1=n(n>1)

 我来答
范幼菱但胜
2020-01-30 · TA获得超过3万个赞
知道大有可为答主
回答量:1.1万
采纳率:25%
帮助的人:638万
展开全部
解:
(1)
a2-a1=2,
a2=a1+2=3,
a3-a2=3,
a3=a2+3=6,
an-a(n-1)=n
an=a(n-1)+n
=a(n-2)+n+(n-1)
=...
=a1+n+(n-1)+...+2
=1+2+...+n
=n(n+1)/2
a1=1也满足此式,
因此通项是an=n(n+1)/2
(2)
bn=1/an
=2/[n(n+1)]
=2/n-2/(n+1)
Sn=b1+b2+..+bn
=(2/1-2/2)+(2/2-2/3)+...+(2/n-2/(n+1))
=2/1-(2/2-2/2)-(2/3-2/3)-...-(2/n-2/n)-2/(n+1)
=2-2/(n+1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式