数学中什么叫裂项法
2个回答
展开全部
举几个例子吧,例如:
1/1×2=1/1-1/2
1/2×3=1/2-1/扰雀3
1/1×3=1/缓顷早2×(1/1-1/3)
...
1/n(n+m)=1/m×(1/n-1/n+m)
像这样把一个分数拆成两个数相加或乎梁相减就叫裂项法
1/1×2=1/1-1/2
1/2×3=1/2-1/扰雀3
1/1×3=1/缓顷早2×(1/1-1/3)
...
1/n(n+m)=1/m×(1/n-1/n+m)
像这样把一个分数拆成两个数相加或乎梁相减就叫裂项法
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
一、基本者闹概念:
1、
数列的定义及表示方法:
2、
数列的项与项数:
3、
有穷数列与无穷数列:
4、
递增(减)、摆动、循环数列:
5、
数列{an}的通项公式an:
6、
数列的前n项和公式sn:
7、
等差数列、公差d、等差数列的结构:
8、
等比数列、公比q、等比数列的结构:
二、基本公式:
9、一般数列的通项an与前n项和sn的关系:an=
10、等差数列的通项公式:an=a1+(n-1)d
an=ak+(n-k)d
(其中a1为首项、ak为已知的第k项)
当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。
11、等差数列的前n项和公式:sn=
sn=
sn=
当d≠0时,sn是关于n的二次式且常数项为0;当d=0时(a1≠0),sn=na1是关于n的正比例式。
12、等比数列的通项公式:
an=
a1
qn-1
an=
ak
qn-k
(其中a1为首项、ak为已知的第k项,an≠0)
13、等比数列的前n项和公式:当q=1时,sn=n
a1
(是关于n的正比例式);
当q≠1时,sn=
sn=
三、有关等差、等比数列的结论
14、等差数列{an}的任意连续m项的和构成的数列sm、s2m-sm、s3m-s2m、s4m
-
s3m、……仍为等差数列。
15、等差数列{an}中,若m+n=p+q,则
16、等比数列{an}中,若m+n=p+q,则
17、等比数列{an}的任意连续m项的和构成的数列sm、s2m-sm、s3m-s2m、s4m
-
s3m、……仍为等比数列。
18、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。
19、两个等比数列{an}与{bn}的积、商、倒数组成的数列
{an
bn}、
、
仍为等比数列。
20、等差数列罩姿{an}的任意等距离的项构成的数列仍为等差数列。
21、等比数列{an}的任意等距离的项构成的数列仍为等比数列。
22、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d
23、三个数成等比的设法:a/q,a,aq;
四个数成等比的错误设法:a/q3,a/q,aq,aq3
(为什么?)
24、{an}为等差数列,则
(c>0)是等比数列。
25、{bn}(bn>0)是等比数列,则{logcbn}
(c>0且c
1)
是等差数列。
26.
在等差数列
中:
(1)若项数为
,则
(2)若数为
则,
,
27.
在等比数列
中:
(1)
若项数为
,则
(2)若数为
则,
四、数列求和的常用方法:公式法、裂项相消法、错位相减法、首闷罩倒序相加法等。关键是找数列的通项结构。
28、分组法求数列的和:如an=2n+3n
29、错位相减法求和:如an=(2n-1)2n
30、裂项法求和:如an=1/n(n+1)
31、倒序相加法求和:如an=
32、求数列{an}的最大、最小项的方法:
①
an+1-an=……
如an=
-2n2+29n-3
②
(an>0)
如an=
③
an=f(n)
研究函数f(n)的增减性
如an=
33、在等差数列
中,有关sn
的最值问题——常用邻项变号法求解:
(1)当
>0,d<0时,满足
的项数m使得
取最大值.
(2)当
<0,d>0时,满足
的项数m使得
取最小值。
在解含绝对值的数列最值问题时,注意转化思想的应用。
1、
数列的定义及表示方法:
2、
数列的项与项数:
3、
有穷数列与无穷数列:
4、
递增(减)、摆动、循环数列:
5、
数列{an}的通项公式an:
6、
数列的前n项和公式sn:
7、
等差数列、公差d、等差数列的结构:
8、
等比数列、公比q、等比数列的结构:
二、基本公式:
9、一般数列的通项an与前n项和sn的关系:an=
10、等差数列的通项公式:an=a1+(n-1)d
an=ak+(n-k)d
(其中a1为首项、ak为已知的第k项)
当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。
11、等差数列的前n项和公式:sn=
sn=
sn=
当d≠0时,sn是关于n的二次式且常数项为0;当d=0时(a1≠0),sn=na1是关于n的正比例式。
12、等比数列的通项公式:
an=
a1
qn-1
an=
ak
qn-k
(其中a1为首项、ak为已知的第k项,an≠0)
13、等比数列的前n项和公式:当q=1时,sn=n
a1
(是关于n的正比例式);
当q≠1时,sn=
sn=
三、有关等差、等比数列的结论
14、等差数列{an}的任意连续m项的和构成的数列sm、s2m-sm、s3m-s2m、s4m
-
s3m、……仍为等差数列。
15、等差数列{an}中,若m+n=p+q,则
16、等比数列{an}中,若m+n=p+q,则
17、等比数列{an}的任意连续m项的和构成的数列sm、s2m-sm、s3m-s2m、s4m
-
s3m、……仍为等比数列。
18、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。
19、两个等比数列{an}与{bn}的积、商、倒数组成的数列
{an
bn}、
、
仍为等比数列。
20、等差数列罩姿{an}的任意等距离的项构成的数列仍为等差数列。
21、等比数列{an}的任意等距离的项构成的数列仍为等比数列。
22、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d
23、三个数成等比的设法:a/q,a,aq;
四个数成等比的错误设法:a/q3,a/q,aq,aq3
(为什么?)
24、{an}为等差数列,则
(c>0)是等比数列。
25、{bn}(bn>0)是等比数列,则{logcbn}
(c>0且c
1)
是等差数列。
26.
在等差数列
中:
(1)若项数为
,则
(2)若数为
则,
,
27.
在等比数列
中:
(1)
若项数为
,则
(2)若数为
则,
四、数列求和的常用方法:公式法、裂项相消法、错位相减法、首闷罩倒序相加法等。关键是找数列的通项结构。
28、分组法求数列的和:如an=2n+3n
29、错位相减法求和:如an=(2n-1)2n
30、裂项法求和:如an=1/n(n+1)
31、倒序相加法求和:如an=
32、求数列{an}的最大、最小项的方法:
①
an+1-an=……
如an=
-2n2+29n-3
②
(an>0)
如an=
③
an=f(n)
研究函数f(n)的增减性
如an=
33、在等差数列
中,有关sn
的最值问题——常用邻项变号法求解:
(1)当
>0,d<0时,满足
的项数m使得
取最大值.
(2)当
<0,d>0时,满足
的项数m使得
取最小值。
在解含绝对值的数列最值问题时,注意转化思想的应用。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询