高中数学解析几何求轨迹方程

 我来答
天萱翠乙
2020-03-29 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.2万
采纳率:35%
帮助的人:1227万
展开全部
圆(x-3)^2+(y-2)^2=1的半径为1,圆心(3,2)到原点O的距离为√13
从原点O到圆作切线,由勾股定理,切线长的平方为13-1=12
设OQ与圆的另一个交点为E,根据切线长定理,|OQ|*|OE|=12
而│OQ│·│OP│=6,所以|OE|=2|OP|,即P为OE中点
设P点坐标为(x,y),则E点坐标为(2x,2y),E是圆上一点
所以P点坐标(x,y)满足:(2x-3)^2+(2y-2)^2=1,此即为P点轨迹方程
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式