利用高斯公式求解第二类曲面积分的题目
1个回答
展开全部
由高斯公式:
被积项是(2xydydz+yzdzdx-z^2dxdy)
=∫∫∫(2y-z)dxdydz
=2∫∫∫ydxdydz-∫∫∫zdxdydz
=2∫∫∫ydxdydz-∫∫∫zdxdydz
(对称性,第1个积分0。第2个积分用截面法)
=-∫(0,1)zdz∫∫dxdy-∫(1,√2)zdz∫∫dxdy
=-π[∫(0,1)z^3dz+∫(1,√2)z(2-z^2)dz]
后面很简单,自己试试?
被积项是(2xydydz+yzdzdx-z^2dxdy)
=∫∫∫(2y-z)dxdydz
=2∫∫∫ydxdydz-∫∫∫zdxdydz
=2∫∫∫ydxdydz-∫∫∫zdxdydz
(对称性,第1个积分0。第2个积分用截面法)
=-∫(0,1)zdz∫∫dxdy-∫(1,√2)zdz∫∫dxdy
=-π[∫(0,1)z^3dz+∫(1,√2)z(2-z^2)dz]
后面很简单,自己试试?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
上海华然企业咨询
2024-10-30 广告
2024-10-30 广告
在上海华然企业咨询有限公司,我们深刻理解大模型测试对于确保数据准确性、提升业务效率及优化用户体验的重要性。我们的测试团队专注于对大模型进行全面而细致的评估,涵盖性能稳定性、预测准确性、响应速度及兼容性等多个维度。通过模拟真实业务场景,我们力...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询