求(x^(n-1)lnx)的n阶导数
1个回答
展开全部
[x^(n-1)*lnx]'=(n-1)x^(n-2)*lnx+x^(n-2)
显然,第二项的n-1阶导数为0,故可以忽略
二阶导数为(n-1)(n-2)x^(n-3)*lnx+(n-1)x^(n-3)+……
同样忽略第二项
……
(n-1)阶为(n-1)!*x^0*lnx+……
n阶为(n-1)!/x
显然,第二项的n-1阶导数为0,故可以忽略
二阶导数为(n-1)(n-2)x^(n-3)*lnx+(n-1)x^(n-3)+……
同样忽略第二项
……
(n-1)阶为(n-1)!*x^0*lnx+……
n阶为(n-1)!/x
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询