1×2+2×3+3×4+..........+98×99+99×100=( ? )
展开全部
1×2+2×3+3×4+4×5+...+98×99+99×100=333300
解答过程:
由1×2=(1×2×3 - 0×1×2)/3 (同理类推)
1×2+2×3+3×4+4×5+...+98×99+99×100=(1×2×3 - 0×1×2 + 2×3×4 - 1×2×3 + 3×4×5 - 2×3×4 + ?+ 99×100×101-98×99×100)/3 (可以看出式子中正负相抵消)
=99×100×101/3
=333300
适用于分式形式的通项公式,把一项拆成两个或多个的差的形式,即an=f(n+1)-f(n),然后累加时抵消中间的许多项。
常用公式:
扩展资料:
1、等差数列
举例:1+2+3+4+5+6+7+8+9=(1+9)×9÷2=45
2、等比数列
a:等差数列首项
d:等差数列公差
e:等比数列首项
q:等比数列公比
3、错位相减法
适用题型:适用于通项公式为等差的一次函数乘以等比的数列形式(等差等比数列相乘)
{ an }、{ bn }分别是等差数列和等比数列。
参考资料:百度百科词条--数列求和
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询