函数f(x)=sinx*cosx+sinx+cosx的值域是
1个回答
展开全部
令 sinx+cosx=t ,则两边平方得 1+2sinxcosx=t^2 ,
所以 f(x)=(t^2-1)/2+t=1/2*(t+1)^2-1 ,
由 t=sinx+cosx=√2*sin(x+π) ∈[ -√2,√2] 得
当 t= -1 时 f(x) 最小值为 -1 ,
当 t=√2 时 f(x) 最大值为 √2+1/2 ,
所以,函数值域为 [-1,√2+1/2] .
所以 f(x)=(t^2-1)/2+t=1/2*(t+1)^2-1 ,
由 t=sinx+cosx=√2*sin(x+π) ∈[ -√2,√2] 得
当 t= -1 时 f(x) 最小值为 -1 ,
当 t=√2 时 f(x) 最大值为 √2+1/2 ,
所以,函数值域为 [-1,√2+1/2] .
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
网易云信
2023-12-06 广告
2023-12-06 广告
UIkit是一套轻量级、模块化且易于使用的开源UI组件库,由YOOtheme团队开发。它提供了丰富的界面元素,包括按钮、表单、表格、对话框、滑块、下拉菜单、选项卡等等,适用于各种类型的网站和应用程序。UIkit还支持响应式设计,可以根据不同...
点击进入详情页
本回答由网易云信提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询