点到直线的距离公式是什么?

 我来答
教育小百科达人
2022-10-16 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:471万
展开全部

点到曲线的距离公式:

公式中方程为Ax+By+C=0,点P的坐标为(x0,y0)。

假设点坐标为(dx,dy), 曲线方程为f(x,y)=0, 从隐曲线最近点(u,v)到该点的向量必垂直于曲线,因此可以通过寻找满足下式的点获得最近点:

1)(u,v)是曲线上的一点,满足f(u,v)=0;

2)向量s=(dx,dy)-(u,v), 即 (dx-u, dy-v);

求出所有的s,其中最短的距离即为点到曲线的距离。

扩展资料:

根据定义,点P(x₀,y₀)到直线l:Ax+By+C=0的距离是点P到直线l的垂线段的长,

设点P到直线的垂线为l',垂足为Q,则l'的斜率为B/A

则l'的解析式为y-y₀=(B/A)(x-x₀)

把l和l'联立得l与l'的交点Q的坐标为((B^2x₀-ABy₀-AC)/(A^2+B^2), (A^2y₀-ABx₀-BC)/(A^2+B^2))

由两点间距离公式得

PQ^2=[(B^2x₀-ABy₀-AC)/(A^2+B^2)-x0]^2

+[(A^2y₀-ABx₀-BC)/(A^2+B^2)-y0]^2

=[(-A^2x₀-ABy₀-AC)/(A^2+B^2)]^2

+[(-ABx₀-B^2y₀-BC)/(A^2+B^2)]^2

=[A(-By₀-C-Ax₀)/(A^2+B^2)]^2

+[B(-Ax₀-C-By₀)/(A^2+B^2)]^2

=A^2(Ax₀+By₀+C)^2/(A^2+B^2)^2

+B^2(Ax₀+By₀+C)^2/(A^2+B^2)^2

=(A^2+B^2)(Ax₀+By₀+C)^2/(A^2+B^2)^2

=(Ax₀+By₀+C)^2/(A^2+B^2)

所以PQ=|Ax₀+By₀+C|/√(A^2+B^2),公式得证。

参考资料:百度百科——点到直线距离

基洒力d
2022-11-26 · 超过37用户采纳过TA的回答
知道小有建树答主
回答量:213
采纳率:0%
帮助的人:5.2万
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式