∫1/sinxcos∧3xdx的不定积分
1个回答
展开全部
u=cosx
du = -sinx dx
(sinx)^2 = 1-u^2
∫1/ [ sinx (cosx)^3] dx = ∫ -1/ [ (1-u^2)u^3]du
因为 -1/ [ (1-u^2)u^3 = - u/(1 - u^2) - 1/u^3 - 1/u
所以 ∫1/ [ sinx (cosx)^3] dx = (1/2) ln(1-u^2) + 1/(2u^2) - ln|u| +C
= ln |tanx| +1/[2(cosx)^2] + C
du = -sinx dx
(sinx)^2 = 1-u^2
∫1/ [ sinx (cosx)^3] dx = ∫ -1/ [ (1-u^2)u^3]du
因为 -1/ [ (1-u^2)u^3 = - u/(1 - u^2) - 1/u^3 - 1/u
所以 ∫1/ [ sinx (cosx)^3] dx = (1/2) ln(1-u^2) + 1/(2u^2) - ln|u| +C
= ln |tanx| +1/[2(cosx)^2] + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询