数学建模流程
数学建模的七个具体步骤如下:
1、明确问题
数学建模所处理的问题通常是各领域的实际问题,这些问题本身往往含糊不清,难以直接找到关键所在,不能明确提出该用什么方法。因此建立模型的首要任务是辨明问题,分析相关条件和问题,一开始尽可能使问题简单,然后再根据目的和要求逐步完善。
2、合理假设
作出合理假设,是建模的一个关键步骤。一个实际问题不经简化、假设,很难直接翻译成数学问题,即使可能也会因其过于复杂而难以求解。因此,根据对象的特征和建模的目的,需要对问题进行必要合理地简化。合理假设的作用除了简化问题,还对模型的使用范围加以限定。
3、搭建模型
搭建模型就是根据实际问题的基本原理或规律,建立变量之间的关系。要描述一个变量随另一个变量的变化而变化,最简单的方法是作图,或者画表格,还可以用数学表达式。在建模中,通常要把一种形式转换成另一种形式。将数学表达式转换成图形和表格较容易,反过来则比较困难。
4、求解模型
对毁者模型的求解往往涉及不同学科的专业知识。现代计算机科学的发展提供了强有力的辅助工具,出现了很卖迟多可进行工程数值计算和数学推导的软件包和仿真工具,熟练掌握数学建模的仿真工具可大大增强建模能力。
5、分析检验
数学模型相对于客观实际不可避免地会带来一定误差,一方面要根据建模的目的确定误差的允许范围,另一方面要分析误差来源,想办法减小误差。数学模型相对于客观实际不可避免地会带来一定误差,一方面要根据建模的目的确定误差的允许范围,另一方面要分析误差来源,想办法减小误差。
6、模型解释
数学建模的最后阶段是用现实世界的语言对模型进行翻译,这对使用模型的人深入了解模型的结果是十分重要的。模型和解是否有实际意义,是否与实际证据相符合。这一步是使数学模型有实际价纤配薯值的关键一步
7、确定结论
对预测结果进行分析和评价,得出有效的结论,并根据实际需求提出合理化建议和措施。
数学建模的过程包括:模型准备、模型假设、模型建立、模型求解、模型的分析与检验、模型应用。
(1)模型准备
要前卜建立实际问题的数学模型,首先要对需要解决问题的实际背景和内在机理进行深刻的了解,通过适当的调查和研究明确所解决的问题是什么?所要达到的主要目的是什么?
(2)模型假设
要建立一个数学模型,就要对所研究的问题和收集到的相关信息进行分析,将那些反映问题本质属性的形态量及其关系抽象出来,而简化掉那些非本质的因素,使之摆脱实际问题的集体复杂形态,形成对建立模型有用的信息资源和前提条件。
作假设时既要运用与皮穗问题相关的物理、化学、生物、经济等方面的知识,又要充分发挥想象力、洞察力和判断力。
(3)模型建立
在模型假设的基础上,首先区分哪些是常量、哪些是变量、哪些是已知量、哪些是未知量;然后查明各种量所处的地位、作用和它们之间的关系。
利用适当的数学工具刻画各变量之间的关系(等式或不等式),建立相应的数学结构(命题、表格、图形等),从而构造出所研究问题的数学模型。
(4)模型求解
构造数学模型之后,再根据已知条件和数据、分析模型的特征和结构特点,设计或采用求解模型的数学方法和算法,主要包括解方程、画图形、逻辑运算、数值计算等各种传统的和现代的数学方法,特别是现代计算机技术和数学软件的使用,可以快速、准确地进行模型的求解。
(5)模型的分析与检验
根据建模的目的和要求,对模型求解的数值结果进行数学上的分析,主要采用的方法有:进行变量之间依赖关系的分析,进行稳定性分析,进行系统参数的灵敏度分析,进行误差分析等。通过分析。
(6)模型应用
目前,数学模型的应用已经非常广泛,越来越渗透到社会学科、生命学科、环境学科等各个领域。而模型的应用才是数学建模的宗旨,也是对模型的最客观、最公正的检验。
因此,一个成功的数学模型,必须根据建模的目的,将其用于分析、研究和解决实际问题,充分发挥数学模型在生产和科研慧握穗中的重要作用和意义。