分组、错位相减、裂项、倒序相加求和,累加、叠乘求通项等所有方法在数列里的应用
呃……就是告诉我在什么条件下用什么方法解题就好了,如:当an=n.2^n此类通项公式由一个等差数列和一个等比数列的积构成时,可以用错位相减法求Sn。要详细哦……就是求高中...
呃……就是告诉我在什么条件下用什么方法解题就好了,
如:当an=n.2^n此类通项公式由一个等差数列和一个等比数列的积构成时,可以用错位相减法求Sn。
要详细哦……就是求高中数列里除了公式法之外的求an和Sn的具体应用题型啦!
是求题型!各种题型!在什么情况下用什么方法! 展开
如:当an=n.2^n此类通项公式由一个等差数列和一个等比数列的积构成时,可以用错位相减法求Sn。
要详细哦……就是求高中数列里除了公式法之外的求an和Sn的具体应用题型啦!
是求题型!各种题型!在什么情况下用什么方法! 展开
展开全部
求和:
1、错位相减:你已知知道了,不说。
2、分组求和:一个数列的通项公式可以分成几个特殊数列的和。例:an=n+1/2^n
3、裂项:形如:1/1*2+1/2*3+1/3*4+1/4*5+……+1/n(n-1),主要是先裂其通项公式。此类题弄主要适用于,分母成等差数列的形式。再如:1/2*4+1/4*6+1/6*8+……+1/2n(2n-2),并且分母的前后项能连上,即为了能相约掉提供条件。
4、倒序相加:适用于可求出a1+an的问题,范围比较窄。例:等差数列{an}共n项,前5项和为10,最后5项和为50,所有项的和为120,求n
这里因为等差数列的性质,可知5+50=5(a1+an),然后利用前n项和的第一个公式,很容易就可以求出项数。
5、此外还有通项化归:即先将通项公式进行化简,再进行求和。如:求数列1,1+2,1+2+3,1+2+3+4,……的前n项和。此时先将an求出,再利用分组等方法求和。
6、并项求和:例:1-2+3-4+5-6+……+(2n-1)-2n
此时当然可以先求出奇数项和偶数项的和,再相减。
但更好的方法是:(1-2)+(3-4)+(5-6)+……+[(2n-1)-2n]
基本现在能遇到的这些就够了。其它雷同。
求通项:
累加、叠乘,你只要把等差数列与等比数列的通项公式推导“过程”弄明白,自然其它形式也能想到。
累加:列出式子后相加,同样的一项,一正一负;
叠乘:列出式子后相乘,同样的一项,一个是分母一个是分子。
昨天就打完了,结果中毒,全白打了。希望对楼主有所裨益。
1、错位相减:你已知知道了,不说。
2、分组求和:一个数列的通项公式可以分成几个特殊数列的和。例:an=n+1/2^n
3、裂项:形如:1/1*2+1/2*3+1/3*4+1/4*5+……+1/n(n-1),主要是先裂其通项公式。此类题弄主要适用于,分母成等差数列的形式。再如:1/2*4+1/4*6+1/6*8+……+1/2n(2n-2),并且分母的前后项能连上,即为了能相约掉提供条件。
4、倒序相加:适用于可求出a1+an的问题,范围比较窄。例:等差数列{an}共n项,前5项和为10,最后5项和为50,所有项的和为120,求n
这里因为等差数列的性质,可知5+50=5(a1+an),然后利用前n项和的第一个公式,很容易就可以求出项数。
5、此外还有通项化归:即先将通项公式进行化简,再进行求和。如:求数列1,1+2,1+2+3,1+2+3+4,……的前n项和。此时先将an求出,再利用分组等方法求和。
6、并项求和:例:1-2+3-4+5-6+……+(2n-1)-2n
此时当然可以先求出奇数项和偶数项的和,再相减。
但更好的方法是:(1-2)+(3-4)+(5-6)+……+[(2n-1)-2n]
基本现在能遇到的这些就够了。其它雷同。
求通项:
累加、叠乘,你只要把等差数列与等比数列的通项公式推导“过程”弄明白,自然其它形式也能想到。
累加:列出式子后相加,同样的一项,一正一负;
叠乘:列出式子后相乘,同样的一项,一个是分母一个是分子。
昨天就打完了,结果中毒,全白打了。希望对楼主有所裨益。
参考资料: 自己经验
展开全部
裂项法
裂项法求和
这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:
(1)1/n(n+1)=1/n-1/(n+1)
(2)1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)]
(3)1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)]
(4)1/(√a+√b)=[1/(a-b)](√a-√b)
(5) n·n!=(n+1)!-n!
[例] 求数列an=1/n(n+1) 的前n项和.
解:设 an=1/n(n+1)=1/n-1/(n+1) (裂项)
则 Sn=1-1/2+1/2-1/3+1/4…+1/n-1/(n+1)(裂项求和)
= 1-1/(n+1)
= n/(n+1)
小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的几项。
注意: 余下的项具有如下的特点
1余下的项前后的位置前后是对称的。
2余下的项前后的正负性是相反的。
一、基本概念
1、 数列的定义及表示方法:按一定次序排列成的一列数叫数列
2、 数列的项an与项数n
3、 按照数列的项数来分,分为有穷数列与无穷数列
4、 按照项的增减规律分为:递增数列,递减数列,摆动数列和常数列
5、 数列的通项公式an
6、 数列的前n项和公式Sn
7、 等差数列、公差d、等差数列的结构:an=a1+(n-1)d
8、 等比数列、公比q、等比数列的结构:an=a1·q^(n-1)
二、基本公式:
9、一般数列的通项an与前n项和Sn的关系:an= Sn-Sn-1
10、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项)
当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。
11、等差数列的前n项和公式:Sn=a1·n+1/2·n·(n+1)·d
当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。
12、等比数列的通项公式: an= a1·q^(n-1) an= ak·q^(n-k)
(其中a1为首项、ak为已知的第k项,an≠0)
13、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);
当q≠1时,Sn=a1·(q^n-1)/(q-1)
三、有关等差、等比数列的结论
14、等差数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等差数列。
15、等差数列中,若m+n=p+q,则 am+an=ap+aq
16、等比数列中,若m+n=p+q,则 am·an=ap·aq
17、等比数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。
18、两个等差数列与的和差的数列{an+bn}仍为等差数列。
19、两个等比数列与的积、商、倒数组成的数列
{an·bn}、{an/bn} 、{1/(an·bn)} 仍为等比数列。
20、等差数列的任意等距离的项构成的数列仍为等差数列。
21、等比数列的任意等距离的项构成的数列仍为等比数列。
22、三个数成等差的设法:a-d,a,a+d;
四个数成等差的设法:a-3d,a-d,,a+d,a+3d
23、三个数成等比的设法:a/q,a,aq;
四个数成等比的错误设法:a/q3,a/q,aq,aq3
四、数列求和的常用方法:
公式法、裂项相消法、错位相减法、倒序相加法等。(关键是找数列的通项结构)
24、分组法求数列的和:如an=2n+3n
25、错位相减法求和:如an=n·2^n
26、裂项法求和:如an=1/n(n+1)
27、倒序相加法求和:如an= n
28、求数列的最大、最小项的方法:
① an+1-an=…… 如an= -2n2+29n-3
② (an>0) 如an=
③ an=f(n) 研究函数f(n)的增减性 如an= an^2+bn+c(a≠0)
29、在等差数列 中,有关Sn 的最值问题——常用邻项变号法求解:
(1)当 a1>0,d<0时,满足的项数m使得Sm取最大值.
(2)当 a1<0,d>0时,满足的项数m使得Sm取最小值.
在解含绝对值的数列最值问题时,注意转化思想的应用。
参考资料:http://baike.baidu.com/view/1101236.htm
我讲的也不一定有上面得好,如果你真的想掌握好,那么你就应该静下心来认真看上面的内容,不要太浮躁。对了,多做基础题巩固,记住题目什么特征运用什么方法,然后再找难题做
要不没有经验看不出来!!!
我相信世上无难事,只怕有心人,这块“骨头”你能“啃”下来!
裂项法求和
这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:
(1)1/n(n+1)=1/n-1/(n+1)
(2)1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)]
(3)1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)]
(4)1/(√a+√b)=[1/(a-b)](√a-√b)
(5) n·n!=(n+1)!-n!
[例] 求数列an=1/n(n+1) 的前n项和.
解:设 an=1/n(n+1)=1/n-1/(n+1) (裂项)
则 Sn=1-1/2+1/2-1/3+1/4…+1/n-1/(n+1)(裂项求和)
= 1-1/(n+1)
= n/(n+1)
小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的几项。
注意: 余下的项具有如下的特点
1余下的项前后的位置前后是对称的。
2余下的项前后的正负性是相反的。
一、基本概念
1、 数列的定义及表示方法:按一定次序排列成的一列数叫数列
2、 数列的项an与项数n
3、 按照数列的项数来分,分为有穷数列与无穷数列
4、 按照项的增减规律分为:递增数列,递减数列,摆动数列和常数列
5、 数列的通项公式an
6、 数列的前n项和公式Sn
7、 等差数列、公差d、等差数列的结构:an=a1+(n-1)d
8、 等比数列、公比q、等比数列的结构:an=a1·q^(n-1)
二、基本公式:
9、一般数列的通项an与前n项和Sn的关系:an= Sn-Sn-1
10、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项)
当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。
11、等差数列的前n项和公式:Sn=a1·n+1/2·n·(n+1)·d
当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。
12、等比数列的通项公式: an= a1·q^(n-1) an= ak·q^(n-k)
(其中a1为首项、ak为已知的第k项,an≠0)
13、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);
当q≠1时,Sn=a1·(q^n-1)/(q-1)
三、有关等差、等比数列的结论
14、等差数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等差数列。
15、等差数列中,若m+n=p+q,则 am+an=ap+aq
16、等比数列中,若m+n=p+q,则 am·an=ap·aq
17、等比数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。
18、两个等差数列与的和差的数列{an+bn}仍为等差数列。
19、两个等比数列与的积、商、倒数组成的数列
{an·bn}、{an/bn} 、{1/(an·bn)} 仍为等比数列。
20、等差数列的任意等距离的项构成的数列仍为等差数列。
21、等比数列的任意等距离的项构成的数列仍为等比数列。
22、三个数成等差的设法:a-d,a,a+d;
四个数成等差的设法:a-3d,a-d,,a+d,a+3d
23、三个数成等比的设法:a/q,a,aq;
四个数成等比的错误设法:a/q3,a/q,aq,aq3
四、数列求和的常用方法:
公式法、裂项相消法、错位相减法、倒序相加法等。(关键是找数列的通项结构)
24、分组法求数列的和:如an=2n+3n
25、错位相减法求和:如an=n·2^n
26、裂项法求和:如an=1/n(n+1)
27、倒序相加法求和:如an= n
28、求数列的最大、最小项的方法:
① an+1-an=…… 如an= -2n2+29n-3
② (an>0) 如an=
③ an=f(n) 研究函数f(n)的增减性 如an= an^2+bn+c(a≠0)
29、在等差数列 中,有关Sn 的最值问题——常用邻项变号法求解:
(1)当 a1>0,d<0时,满足的项数m使得Sm取最大值.
(2)当 a1<0,d>0时,满足的项数m使得Sm取最小值.
在解含绝对值的数列最值问题时,注意转化思想的应用。
参考资料:http://baike.baidu.com/view/1101236.htm
我讲的也不一定有上面得好,如果你真的想掌握好,那么你就应该静下心来认真看上面的内容,不要太浮躁。对了,多做基础题巩固,记住题目什么特征运用什么方法,然后再找难题做
要不没有经验看不出来!!!
我相信世上无难事,只怕有心人,这块“骨头”你能“啃”下来!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
错位相减
a(n+1)=k*an
则令 s=a1+a2+...an;
后 同乘以k,得 k*s=k*a1+k*a2+...+k*an
由于 a(n+1)=k*an,所以相减得 :
(1-k)*s=a1-k*a(n-1),求的 s;
a(n+1)=k*an
则令 s=a1+a2+...an;
后 同乘以k,得 k*s=k*a1+k*a2+...+k*an
由于 a(n+1)=k*an,所以相减得 :
(1-k)*s=a1-k*a(n-1),求的 s;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询