1个回答
展开全部
(a/√b +b/√a)-√a-√b
=(a/√b -√b)+(b/√a -√a)
通分,得
=(a-b)/√b +(b-a)/√a
=(a-b)/√b -(a-b)/√a
=(a-b)[1/√b -1/√a]
=[(a-b)(√a -√b)]/√(ab) ≥0
所以,结论成立.
http://zhidao.baidu.com/question/23819210.html?si=2
如果a、b都是正整数
b^2/a+a^2/b=(a^3+b^3)/ab=(a+b)(a^2-ab+b^2)/ab
要比较b^2/a+a^2/b与a+b的大小
只需比较(a^2-ab+b^2)/ab跟1的关系
由a^2+b^2>=2ab可得:(a^2-ab+b^2)/ab>=(2ab-ab)/ab=1
所以b^2/a+a^2/b=(a+b)(a^2-ab+b^2)/ab>=a+b
http://zhidao.baidu.com/question/12211169.html?si=3
=(a/√b -√b)+(b/√a -√a)
通分,得
=(a-b)/√b +(b-a)/√a
=(a-b)/√b -(a-b)/√a
=(a-b)[1/√b -1/√a]
=[(a-b)(√a -√b)]/√(ab) ≥0
所以,结论成立.
http://zhidao.baidu.com/question/23819210.html?si=2
如果a、b都是正整数
b^2/a+a^2/b=(a^3+b^3)/ab=(a+b)(a^2-ab+b^2)/ab
要比较b^2/a+a^2/b与a+b的大小
只需比较(a^2-ab+b^2)/ab跟1的关系
由a^2+b^2>=2ab可得:(a^2-ab+b^2)/ab>=(2ab-ab)/ab=1
所以b^2/a+a^2/b=(a+b)(a^2-ab+b^2)/ab>=a+b
http://zhidao.baidu.com/question/12211169.html?si=3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询