设x=(根号5+1)/2,求(x^3+x+1)/x^5的值。

370116
高赞答主

2009-03-22 · 你的赞同是对我最大的认可哦
知道顶级答主
回答量:9.6万
采纳率:76%
帮助的人:6.2亿
展开全部
原题即:设x=(√5+1)/2,求(x^3+x+1)/x^5的值。

解:由于x^2=[(√5+1)/2]^2=(6+2√5)/4=(3+√5)/2;
x^3=x^2×x=(3+√5)/2×(√5+1)/2=(8+4√5)/4=2+√5;
x^5=x^3×x^2=(2+√5)×(3+√5)/2=(11+5√5)/2;

则1/x^5=2/(11+5√5)=2(11-5√5)/(121-125)=(5√5-11)/2.............注:分母有理化

所以(x^3+x+1)/x^5
=(x^3+x+1)×1/x^5
=[2+√5+(√5+1)/2+1]×(5√5-11)/2
=(7+3√5)/2×(5√5-11)/2
=(2√5-2)/4
=(√5-1)/2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式