解: ∵⊙O的半径为2,∴OA=2,
过圆心O作OD⊥AB弦,D为垂足,故有OD垂直平分AB,即AD=(1/2)AB
又∵ 弦AB = 2√3 ,∴ AD = (1/2)AB = (1/2)*2√3 = √3
由OD⊥AB弦,∠ODA=90°,△OAD是Rt△,由勾股定理,
OD =√(OA^2 -AD^2)=√[2^2 - (√3)^2] = 1
又∵AC=(1/4)AB,∴AC =(1/4)AB = √3/2
于是: CD = AD -AC = √3 -√3/2 = √3/2
在Rt△OCD中,OC=√(OD^2 + CD^2) =√ [ 1^2 +(√3/2)^2] = √7/2