
化学专业英语翻译
Magnesiumalloysarecomparedtothemostpromisingandlightestmetallicstructuralmaterialinth...
Magnesium alloys are compared to the most promising and
lightest metallic structural material in the 21 century, having been
used for many applications, which include automobile industry,
aerospace components and communication and computer parts
due to their excellent physical and mechanical properties [1–3].
However, magnesium alloys are highly susceptible to corrosion,
especially, in acidic environments and in salt-water conditions,
which have seriously limited their widespread use in many applications
[4–5]. Therefore, it is very important to improve the anticorrosion
performances of magnesium alloys in industrial
applications.
Usually, corrosion resistance of magnesium alloys is enhanced
by applications of surface coatings or treatments [6]. Several coating
techniques have been adopted to improve the corrosion resistance
of magnesium alloys. These include electrochemical plating
[7], chemical conversion [6], anodizing [8], organic polymer deposition
[9] and sol–gel method [10,11], etc., each with their own
advantages and disadvantages.
Out of all the techniques, the sol–gel method is a convenient,
inexpensive, and environmentally friendly technique for preparing
adherent, protective and chemically inert metal oxide coatings
required for magnesium alloy as already shown on
aluminum alloys and steel substrates [1,12–15]. Some researchers
try to improve the corrosion resistance of magnesium alloy with a
combination of sol–gel method and other techniques such as
anodizing, electrochemical and chemical conversion, and great
improvements have been achieved [11,16]. However, there are a
few papers about directly using the sol–gel method as a single
technique in anti-corrosion of magnesium alloys [17,18]. The
main challenges of that are the high chemical activities of magnesium
alloy, and most of sols possess a low pH as well as containing
some corrosive ions such as Cl, NO3 and Ac. As a result,
although the CeO2 thin film can provide good corrosion protection,
it is not possible to apply the CeO2 thin film directly on
the AZ91D magnesium alloy surface, as it would react with the
coating solution, leading to the poor adhesion of the layer and
subsequent corrosion of substrate.
Therefore, at the present paper, 展开
lightest metallic structural material in the 21 century, having been
used for many applications, which include automobile industry,
aerospace components and communication and computer parts
due to their excellent physical and mechanical properties [1–3].
However, magnesium alloys are highly susceptible to corrosion,
especially, in acidic environments and in salt-water conditions,
which have seriously limited their widespread use in many applications
[4–5]. Therefore, it is very important to improve the anticorrosion
performances of magnesium alloys in industrial
applications.
Usually, corrosion resistance of magnesium alloys is enhanced
by applications of surface coatings or treatments [6]. Several coating
techniques have been adopted to improve the corrosion resistance
of magnesium alloys. These include electrochemical plating
[7], chemical conversion [6], anodizing [8], organic polymer deposition
[9] and sol–gel method [10,11], etc., each with their own
advantages and disadvantages.
Out of all the techniques, the sol–gel method is a convenient,
inexpensive, and environmentally friendly technique for preparing
adherent, protective and chemically inert metal oxide coatings
required for magnesium alloy as already shown on
aluminum alloys and steel substrates [1,12–15]. Some researchers
try to improve the corrosion resistance of magnesium alloy with a
combination of sol–gel method and other techniques such as
anodizing, electrochemical and chemical conversion, and great
improvements have been achieved [11,16]. However, there are a
few papers about directly using the sol–gel method as a single
technique in anti-corrosion of magnesium alloys [17,18]. The
main challenges of that are the high chemical activities of magnesium
alloy, and most of sols possess a low pH as well as containing
some corrosive ions such as Cl, NO3 and Ac. As a result,
although the CeO2 thin film can provide good corrosion protection,
it is not possible to apply the CeO2 thin film directly on
the AZ91D magnesium alloy surface, as it would react with the
coating solution, leading to the poor adhesion of the layer and
subsequent corrosion of substrate.
Therefore, at the present paper, 展开
展开全部
我就不直译了:
镁合金被认为是21世纪最有前途的和最轻的金属结构材料,由于它的优等的物理和力学性质,已经应用到包括汽车制造业、航空原件、交通、电脑部件在内的多种领域。但是,镁合金很容易被腐蚀,特别是在酸性环境和盐溶液中。这些限制了镁合金应用的普及。因此,在工业上应用中,使镁合金不易腐蚀(直译为:提高镁合金的反腐蚀能力),变得很重要。
通常,耐腐蚀的镁合金是增强,所应用的表面涂层或治疗。一些涂料技术已经通过了以提高耐腐蚀性 镁合金。其中包括电化学镀 ,化学转化,阳极氧化,有机聚合物沉降和溶胶凝胶法,等等,每一个都有自己 优点和缺点。 所有技术中,溶胶凝胶法是一种方便,价格低廉,环保技术准备粘附,保护和化学惰性金属氧化膜所需的镁合金作为已经显示出对铝合金和钢基板。一些研究人员设法改善耐蚀性的镁合金结合溶胶凝胶法和其他技术,如阳极氧化,电化学和化学转换和伟大改进已经取得了。然而,有几个文件关于直接使用溶胶凝胶法作为一个单一的技术在防腐蚀的镁合金。那个主要挑战是高镁化学活动
合金,大多数溶胶拥有低pH以及载一些腐蚀性离子,如氯, 3号和交流。其结果是,虽然CeO2薄膜可以提供良好的防腐蚀保护,但CeO2薄膜不能直接应用到AZ91D镁合金的表面,因为,它会和涂料反应而分解,导致粘着于表层,随后导致基底的腐蚀。
因此,现在的
镁合金被认为是21世纪最有前途的和最轻的金属结构材料,由于它的优等的物理和力学性质,已经应用到包括汽车制造业、航空原件、交通、电脑部件在内的多种领域。但是,镁合金很容易被腐蚀,特别是在酸性环境和盐溶液中。这些限制了镁合金应用的普及。因此,在工业上应用中,使镁合金不易腐蚀(直译为:提高镁合金的反腐蚀能力),变得很重要。
通常,耐腐蚀的镁合金是增强,所应用的表面涂层或治疗。一些涂料技术已经通过了以提高耐腐蚀性 镁合金。其中包括电化学镀 ,化学转化,阳极氧化,有机聚合物沉降和溶胶凝胶法,等等,每一个都有自己 优点和缺点。 所有技术中,溶胶凝胶法是一种方便,价格低廉,环保技术准备粘附,保护和化学惰性金属氧化膜所需的镁合金作为已经显示出对铝合金和钢基板。一些研究人员设法改善耐蚀性的镁合金结合溶胶凝胶法和其他技术,如阳极氧化,电化学和化学转换和伟大改进已经取得了。然而,有几个文件关于直接使用溶胶凝胶法作为一个单一的技术在防腐蚀的镁合金。那个主要挑战是高镁化学活动
合金,大多数溶胶拥有低pH以及载一些腐蚀性离子,如氯, 3号和交流。其结果是,虽然CeO2薄膜可以提供良好的防腐蚀保护,但CeO2薄膜不能直接应用到AZ91D镁合金的表面,因为,它会和涂料反应而分解,导致粘着于表层,随后导致基底的腐蚀。
因此,现在的
展开全部
谷歌金山词霸翻译:仅供参考。
镁合金相比,最有前途和
最轻的金属结构材料,在二十一世纪,已
用于多种应用,其中包括汽车业,
航空航天零部件,通讯和电脑零件
由于其良好的物理和力学性能[ 1-3 ] 。
然而,镁合金极易受到腐蚀,
特别是,在酸性环境,并在海水条件下,
这已经严重地限制了其广泛使用在许多应用中
[ 4-5 ] 。因此,它是非常重要的改进防腐
表演的镁合金在工业
应用。
通常,耐腐蚀的镁合金是增强
所应用的表面涂层或治疗[ 6 ] 。一些涂料
技术已经通过了以提高耐腐蚀性
镁合金。其中包括电化学镀
[ 7 ] ,化学转化[ 6 ] ,阳极氧化[ 8 ] ,有机聚合物沉积
[ 9 ]和溶胶凝胶法[ 10,11 ] ,等等,每一个都有自己
优点和缺点。
的所有技术,溶胶凝胶法是一种方便,
价格低廉,环保技术准备
粘附,保护和化学惰性金属氧化膜
所需的镁合金作为已经显示出对
铝合金和钢基板[ 1,12-15 ] 。一些研究人员
设法改善耐蚀性的镁合金
结合溶胶凝胶法和其他技术,如
阳极氧化,电化学和化学转换和伟大
改进已经取得了[ 11,16 ] 。然而,有
几个文件关于直接使用溶胶凝胶法作为一个单一的
技术在防腐蚀的镁合金[ 17,18 ] 。那个
主要挑战是高镁化学活动
合金,大多数溶胶拥有低pH以及载
一些腐蚀性离子,如氯, 3号和交流。其结果是,
虽然CeO2薄膜可以提供良好的耐蚀p
镁合金相比,最有前途和
最轻的金属结构材料,在二十一世纪,已
用于多种应用,其中包括汽车业,
航空航天零部件,通讯和电脑零件
由于其良好的物理和力学性能[ 1-3 ] 。
然而,镁合金极易受到腐蚀,
特别是,在酸性环境,并在海水条件下,
这已经严重地限制了其广泛使用在许多应用中
[ 4-5 ] 。因此,它是非常重要的改进防腐
表演的镁合金在工业
应用。
通常,耐腐蚀的镁合金是增强
所应用的表面涂层或治疗[ 6 ] 。一些涂料
技术已经通过了以提高耐腐蚀性
镁合金。其中包括电化学镀
[ 7 ] ,化学转化[ 6 ] ,阳极氧化[ 8 ] ,有机聚合物沉积
[ 9 ]和溶胶凝胶法[ 10,11 ] ,等等,每一个都有自己
优点和缺点。
的所有技术,溶胶凝胶法是一种方便,
价格低廉,环保技术准备
粘附,保护和化学惰性金属氧化膜
所需的镁合金作为已经显示出对
铝合金和钢基板[ 1,12-15 ] 。一些研究人员
设法改善耐蚀性的镁合金
结合溶胶凝胶法和其他技术,如
阳极氧化,电化学和化学转换和伟大
改进已经取得了[ 11,16 ] 。然而,有
几个文件关于直接使用溶胶凝胶法作为一个单一的
技术在防腐蚀的镁合金[ 17,18 ] 。那个
主要挑战是高镁化学活动
合金,大多数溶胶拥有低pH以及载
一些腐蚀性离子,如氯, 3号和交流。其结果是,
虽然CeO2薄膜可以提供良好的耐蚀p
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
镁合金被认为是最有希望和最轻的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询