在等腰RT△ABC中,<BAC=90度,P是△ABC内的一点,且PA=1,PB=3,PC=√7,求<CPA=?

wang_lianhe
2009-04-01 · TA获得超过2.5万个赞
知道大有可为答主
回答量:2338
采纳率:50%
帮助的人:2087万
展开全部
解:过P作PD垂直AC,PE垂直AB,垂足为D,E,则PE=AP,PD=AE
设AB=AC=a,PE=AP=m,PD=AE=n
则PC=a-m,BE=a-n
利用勾股定理
m^2+n^2=PA^2=1 (1)
(a-m)^2+n^2=PC^2=7 (2)
m^2+(a-n)^2=PB^2=9 (3)
(3)-(2)得:2a(m-n)=2
a(m-n)=1 (4)
(3)+(2)-(1)*2得:2a^2-2a(m+n)=14
a(m+n)=a^2-7 (5)
由(4)(5)得
m=(a^2-6)/(2a) (6)
n=(a^2-8)/(2a) (7)
因n>0,所以a^2>8 (8)
把(6)(7) 代人(1)得
a^4-16a^2+50=0 (9)
由(8)(9)得a^2=8+14^(1/2)
在三角形CPA中,利用余弦定理
AC^2=PA^2+PC^2-2*PA*PC*COS<CPA
8+14^(1/2)=1+7-2*1*7^(1/2)COS<CPA
COS<CPA=-2^(1/2)/2
所以<CPA=135°
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式