计算曲面积分∫根号下(x^2+y^2)ds,其中L:x^2+y^2=-2y,答案是8,求过程。。。
1个回答
展开全部
积分曲线x^2+(y+1)^2=1
所以参数方程是x=cost, y=-1+sint. t∈[0,2π]
ds=√[(x't)^2+(y't)^2]dt= dt
∫√(x^2+y^2)ds
=∫√(-2y)ds
=∫√[2(1-sint)] dt
=√2 ∫(0->2π) |sin(t/2)-cos(t/2)|dt
=2√2 ∫(0->2π) |sin(t/2)-cos(t/2)|d(t/2)
=2√2 ∫(0->π) |sinu-cosu|du
=2√2 [∫(0->π/4) (cosu-sinu)du + ∫(π/4->π) (sinu-cosu)du]
=2√2(√2+1)
所以参数方程是x=cost, y=-1+sint. t∈[0,2π]
ds=√[(x't)^2+(y't)^2]dt= dt
∫√(x^2+y^2)ds
=∫√(-2y)ds
=∫√[2(1-sint)] dt
=√2 ∫(0->2π) |sin(t/2)-cos(t/2)|dt
=2√2 ∫(0->2π) |sin(t/2)-cos(t/2)|d(t/2)
=2√2 ∫(0->π) |sinu-cosu|du
=2√2 [∫(0->π/4) (cosu-sinu)du + ∫(π/4->π) (sinu-cosu)du]
=2√2(√2+1)
追问
你答案好像算错了。。不过方法我懂啦,谢啦
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询