如图,边长为2的正方形ABCD中,(1)E、F是AB、BC的中点,将△AED、△DCF分别沿DE、DF折起,使A、C两点重
如图,边长为2的正方形ABCD中,(1)E、F是AB、BC的中点,将△AED、△DCF分别沿DE、DF折起,使A、C两点重合于点A′,求证:A′D⊥EF;(2)若BE=B...
如图,边长为2的正方形ABCD中,(1)E、F是AB、BC的中点,将△AED、△DCF分别沿DE、DF折起,使A、C两点重合于点A′,求证:A′D⊥EF;(2)若BE=BF=λBC,求λ的范围并求三棱锥A′-EFD的体积.
展开
1个回答
展开全部
解答:(1)证明:∵边长为2的正方形ABCD中,
E、F是AB、BC的中点,将△AED、△DCF分别沿DE、DF折起,使AC两点重合于点A′,
∴A'D⊥A'E,A'D⊥A'F,A'E∩A'F=A',
∴A'D⊥面A'EF,
∵EF?面A'EF,∴A'D⊥EF.
(2)解:取EF中点G,连接A'G,则A'G⊥EF,
∵BE=BF=λBC=2λ,∠EBF=90°,∴EF=2
λ,
A'E=A'F=2-2λ,A′G=
,
要使A、C两点能重合于点A',则在△A'EF中,A'E+A'F>EF
即2(2?2λ)>2
λ,
∴0<λ<2?
,
∵DA'⊥A'F,A'D⊥EF,∴A'D⊥面A'EF,
则VA′?EFD=
SA′EF?A′D=
=
λ
.
E、F是AB、BC的中点,将△AED、△DCF分别沿DE、DF折起,使AC两点重合于点A′,
∴A'D⊥A'E,A'D⊥A'F,A'E∩A'F=A',
∴A'D⊥面A'EF,
∵EF?面A'EF,∴A'D⊥EF.
(2)解:取EF中点G,连接A'G,则A'G⊥EF,
∵BE=BF=λBC=2λ,∠EBF=90°,∴EF=2
2 |
A'E=A'F=2-2λ,A′G=
2λ2?8λ+4 |
要使A、C两点能重合于点A',则在△A'EF中,A'E+A'F>EF
即2(2?2λ)>2
2 |
∴0<λ<2?
2 |
∵DA'⊥A'F,A'D⊥EF,∴A'D⊥面A'EF,
则VA′?EFD=
1 |
3 |
2
| ||
3 |
2λ2?8λ+4 |
4 |
3 |
λ2?4λ+2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询