已知等差数列{an}中,a1=2,a3=-6.(Ⅰ)求数列{an}的通项公式;(Ⅱ)若数列{an}的前k项和Sk=-48,求k
已知等差数列{an}中,a1=2,a3=-6.(Ⅰ)求数列{an}的通项公式;(Ⅱ)若数列{an}的前k项和Sk=-48,求k的值....
已知等差数列{an}中,a1=2,a3=-6.(Ⅰ)求数列{an}的通项公式;(Ⅱ)若数列{an}的前k项和Sk=-48,求k的值.
展开
展开全部
(Ⅰ)设等差数列{an}的公差为d,则an=a1+(n-1)d.
由a1=2,a3=-6,可得2+2d=-6,解得d=-4.
从而,an=2+(n-1)×(-4)=6-4n.--------(5分)
(Ⅱ)由(Ⅰ)可知an=6-4n,所以Sn=
=4n-2n2.
进而由Sk=-48,可得4k-2k2=-48.
即k2-2k-24=0,解得k=6或k=-4.
又k∈N*,故k=6为所求.-------(13分)
由a1=2,a3=-6,可得2+2d=-6,解得d=-4.
从而,an=2+(n-1)×(-4)=6-4n.--------(5分)
(Ⅱ)由(Ⅰ)可知an=6-4n,所以Sn=
n(2+6?4n) |
2 |
进而由Sk=-48,可得4k-2k2=-48.
即k2-2k-24=0,解得k=6或k=-4.
又k∈N*,故k=6为所求.-------(13分)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询