设limx→0f(x)x=1,且f″(x)>0,证明f(x)≥x
2个回答
展开全部
证明:由f″(x)>0知f(x)连续;
再根据
=1可知f(0)=0,f′(0)=1
故由麦克劳林中值定理f(x)=f(0)+f′(0)x+
x2 ,(0<ξ<x)
即f(x)=0+x+
x2=x+
x2
由于f″(x)>0(即f''(ξ)>0),x2≥0,所以
x2≥0;
两边加上x则得:x+
x2≥x,即f(x)≥x.
再根据
lim |
x→0 |
f(x) |
x |
故由麦克劳林中值定理f(x)=f(0)+f′(0)x+
f″(ξ) |
2! |
即f(x)=0+x+
f″(ξ) |
2 |
f″(ξ) |
2 |
由于f″(x)>0(即f''(ξ)>0),x2≥0,所以
f″(ξ) |
2 |
两边加上x则得:x+
f″(ξ) |
2 |
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询