如图,点D、B分别在∠A的两边上,C是∠A内一点,且AB=AD,BC=DC,CE⊥AD,CF⊥AB,垂足分别为E、F.求证

如图,点D、B分别在∠A的两边上,C是∠A内一点,且AB=AD,BC=DC,CE⊥AD,CF⊥AB,垂足分别为E、F.求证:CE=CF。... 如图,点D、B分别在∠A的两边上,C是∠A内一点,且AB=AD,BC=DC,CE⊥AD,CF⊥AB,垂足分别为E、F.求证:CE=CF。 展开
 我来答
btinvfr
推荐于2016-06-05 · 超过65用户采纳过TA的回答
知道答主
回答量:119
采纳率:0%
帮助的人:118万
展开全部
证明:

连接AC
因为AB=AD,BC=DC,AC=AC
所以△ABC≌△ADC(  SSS )
所以∠DAC=∠BAC
又因为CE⊥AD,CF⊥AB,
所以CE=CF(角平分线上的点到角两边的距离相等)

连接AC,证明△ABC≌△ADC,求得AC平分∠EAF,再由角平分线的性质即可证明CE=CF.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式