极大值一定大于极小值吗
4个回答
展开全部
极大值并不一定会大于极小值。
因为极大值和极小值的定义有特定的定义域,在不同的定义域当中的极大值和极小值不一定是相等的。
在某一区域当中可能此数值是极大值或者是极小值,但是放在整个定义域当中可能并不是如此,所以说极大值和极小值只是局部的。
扩展资料:
如果一个函数在一点的一个邻域内处处都有确定的值,而以该点处的值为最大(小),这函数在该点处的值就是一个极大(小)值。如果它比邻域内其他各点处的函数值都大(小),它就是一个严格极大(小)。该点就相应地称为一个极值点或严格极值点。
函数在其整个定义域内可能有许多极 大值或极小值,而且某个极大值不 一定大于某个极小值。函数的极值 通过其一阶和二阶导数来确定。对于一元可微函数f (x),它在某点x0有极值的充分必要条件是f(x)在x0的某邻域上一阶可导,在x0处二阶可导,且f'(X0)=0,f"(x0)≠0。
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
2018-07-05 · 知道合伙人人力资源行家
518姚峰峰
知道合伙人人力资源行家
向TA提问 私信TA
知道合伙人人力资源行家
采纳数:50865
获赞数:564245
大学班长,中共党员。一次性通过英语四六级及计算机二级,现任公司综合办主任。为百度金榜题名时团队团长。
向TA提问 私信TA
关注
展开全部
不一定
极大值与极小值是在领域内定义的,就是在极值点的左右,非常短的距离内,它是最大值或最小值,但是在整个定义域内,它并不是最值点,就有可能存在比极大值大的极小值。极值只是针对领域内,不是针对整个定义域。
举个例:
假设一个连续函数f(x),极值就是f'(x)=0的点,同时在f''(x)大于0的点就是极小值,小于0就是极大值。就是这个插图,你就看出来了,图上4个拐点就是极值点,你就看出,左边第二个点(极小值点)的值就大于最右边那个点(极大值)
希望帮到你 望采纳 谢谢 加油
极大值与极小值是在领域内定义的,就是在极值点的左右,非常短的距离内,它是最大值或最小值,但是在整个定义域内,它并不是最值点,就有可能存在比极大值大的极小值。极值只是针对领域内,不是针对整个定义域。
举个例:
假设一个连续函数f(x),极值就是f'(x)=0的点,同时在f''(x)大于0的点就是极小值,小于0就是极大值。就是这个插图,你就看出来了,图上4个拐点就是极值点,你就看出,左边第二个点(极小值点)的值就大于最右边那个点(极大值)
希望帮到你 望采纳 谢谢 加油
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
不一定~如常数函数~极大极小值一样大~
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询