高一数学,数列求和问题,谢谢
1个回答
展开全部
(1)求数列{(2n+1)·2ⁿ}的前n项和。
解:a‹n›=(2n+1)×2ⁿ
S‹n›=3×2¹+5×2²+7×2³+7×2⁴+……+(2n+1)×2ⁿ…………①
2S‹n›=3×2²+5×2³+7×2⁴+……+(2n-1)×2ⁿ+(2n+1)×2^(n+1)…………②
①-②(错项相减)得:
-S‹n›=3×2¹+2×2²+2×2³+2×2⁴+……+2×2ⁿ-(2n+1)×2^(n+1)
=6+2³+2⁴+……+2ⁿ-(2n-1)×2^(n+1)
=2+2²+2³+2⁴+……+2ⁿ-(2n-1)×2^(n+1)
=2^(n+1)-2-(2n-1)×2^(n+1)
=-2n×2^(n+1)-2
=-n×2^(n+2)-2
∴S‹n›=n×2^(n+2)+2。
(2)求数列{(1-2n)/3ⁿˉ¹}的前n项和。
解:an=(1-2n)/3ⁿˉ¹=(1/3)ⁿˉ¹ -2n/3ⁿˉ¹,
Sn=a1+a2+...+an
=(1/3)+(1/3)²+...+(1/3)ⁿˉ¹-2[1/3^0+2/3+3/3²+...+n/3ⁿˉ¹]
令Cn=1/3^0+2/3+3/3²+...+n/3ⁿˉ¹,
则Cn /3=1/3+2/3²+...+(n-1)/3ⁿˉ¹+n/3ⁿ
Cn -Cn/3=2Cn /3=1+1/3+1/3²+...+1/3ⁿˉ¹-n/3ⁿ,
Cn=3(1+1/3+1/3²+...+1/3ⁿˉ¹-n/3ⁿ)/2,
Sn=(1/3)+(1/3)²+...+(1/3)ⁿˉ¹-3(1+1/3+1/3²+...+1/3ⁿˉ¹-n/3ⁿ)
=(1/3)+(1/3)²+...+(1/3)ⁿˉ¹-3-1-1/3-1/3²-...-1/3ⁿˉ²-n/3ⁿˉ¹
= (1/3)ⁿˉ¹-3-1-n/3ⁿˉ¹
= (1-n)/3ⁿˉ¹-4
解:a‹n›=(2n+1)×2ⁿ
S‹n›=3×2¹+5×2²+7×2³+7×2⁴+……+(2n+1)×2ⁿ…………①
2S‹n›=3×2²+5×2³+7×2⁴+……+(2n-1)×2ⁿ+(2n+1)×2^(n+1)…………②
①-②(错项相减)得:
-S‹n›=3×2¹+2×2²+2×2³+2×2⁴+……+2×2ⁿ-(2n+1)×2^(n+1)
=6+2³+2⁴+……+2ⁿ-(2n-1)×2^(n+1)
=2+2²+2³+2⁴+……+2ⁿ-(2n-1)×2^(n+1)
=2^(n+1)-2-(2n-1)×2^(n+1)
=-2n×2^(n+1)-2
=-n×2^(n+2)-2
∴S‹n›=n×2^(n+2)+2。
(2)求数列{(1-2n)/3ⁿˉ¹}的前n项和。
解:an=(1-2n)/3ⁿˉ¹=(1/3)ⁿˉ¹ -2n/3ⁿˉ¹,
Sn=a1+a2+...+an
=(1/3)+(1/3)²+...+(1/3)ⁿˉ¹-2[1/3^0+2/3+3/3²+...+n/3ⁿˉ¹]
令Cn=1/3^0+2/3+3/3²+...+n/3ⁿˉ¹,
则Cn /3=1/3+2/3²+...+(n-1)/3ⁿˉ¹+n/3ⁿ
Cn -Cn/3=2Cn /3=1+1/3+1/3²+...+1/3ⁿˉ¹-n/3ⁿ,
Cn=3(1+1/3+1/3²+...+1/3ⁿˉ¹-n/3ⁿ)/2,
Sn=(1/3)+(1/3)²+...+(1/3)ⁿˉ¹-3(1+1/3+1/3²+...+1/3ⁿˉ¹-n/3ⁿ)
=(1/3)+(1/3)²+...+(1/3)ⁿˉ¹-3-1-1/3-1/3²-...-1/3ⁿˉ²-n/3ⁿˉ¹
= (1/3)ⁿˉ¹-3-1-n/3ⁿˉ¹
= (1-n)/3ⁿˉ¹-4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询