4个回答
2017-11-15
展开全部
看 y=arctanx,则x=tany arctanx′=1/tany′ tany′=(siny/cosy)′=cosycosy-siny(-siny)/cos²y=1/cos²y 则arctanx′=cos²y=cos²y/sin²y+cos²y=1/1+tan²y=1/1+x²
展开全部
x=tany
y= arctanx
dx/dy =1/sec^2(y)=1/(1+tan^2(y))=1/(1+x^2)
y'(x)=1/1+x^2
扩展资料:
三角函数求导公式:
(arcsinx)'=1/(1-x^2)^1/2
(arccosx)'=-1/(1-x^2)^1/2
(arctanx)'=1/(1+x^2)
(arccotx)'=-1/(1+x^2)
(arcsecx)'=1/(|x|(x^2-1)^1/2)
(arccscx)'=-1/(|x|(x^2-1)^1/2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(arctanx)'=1/(1+x^2)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1/(1+x²)+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询