求不定积分,这种类型的题怎么做?
2个回答
展开全部
1、令t=√(e^x-1),则x=ln(1+t^2),dx=2t/(1+t^2)dt
原式=∫ln(1+t^2)*[(1+t^2)/t]*[2t/(1+t^2)]dt
=2∫ln(1+t^2)dt
=2tln(1+t^2)-2∫td[ln(1+t^2)]
=2tln(1+t^2)-4∫(t^2)/(1+t^2)dt
=2tln(1+t^2)-4∫[1-1/(1+t^2)]dt
=2tln(1+t^2)-4t+4arctant+C
=2x√(e^x-1)-4√(e^x-1)+4arctan√(e^x-1)+C
=2(x-2)√(e^x-1)+4arctan√(e^x-1)+C,其中C是任意常数
2、令t=√x,则x=t^2,dx=2tdt
原式=∫arctant/[t(1+t^2)]*2tdt
=2∫arctant/(1+t^2)dt
=2∫arctantd(arctant)
=(arctant)^2+C
=(arctan√x)^2+C,其中C是任意常数
3、原式=(1/√2)*∫1/√(x^2-x/2+1)dx
=(1/√2)*∫1/√[(x-1/4)^2+15/16]d(x-1/4)
=(1/√2)*ln[x-1/4+√(x^2-x/2+1)]+C,其中C是任意常数
原式=∫ln(1+t^2)*[(1+t^2)/t]*[2t/(1+t^2)]dt
=2∫ln(1+t^2)dt
=2tln(1+t^2)-2∫td[ln(1+t^2)]
=2tln(1+t^2)-4∫(t^2)/(1+t^2)dt
=2tln(1+t^2)-4∫[1-1/(1+t^2)]dt
=2tln(1+t^2)-4t+4arctant+C
=2x√(e^x-1)-4√(e^x-1)+4arctan√(e^x-1)+C
=2(x-2)√(e^x-1)+4arctan√(e^x-1)+C,其中C是任意常数
2、令t=√x,则x=t^2,dx=2tdt
原式=∫arctant/[t(1+t^2)]*2tdt
=2∫arctant/(1+t^2)dt
=2∫arctantd(arctant)
=(arctant)^2+C
=(arctan√x)^2+C,其中C是任意常数
3、原式=(1/√2)*∫1/√(x^2-x/2+1)dx
=(1/√2)*∫1/√[(x-1/4)^2+15/16]d(x-1/4)
=(1/√2)*ln[x-1/4+√(x^2-x/2+1)]+C,其中C是任意常数
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询