一道初三数学题(关于圆的)

 我来答
项成郏卯
2020-04-26 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.2万
采纳率:33%
帮助的人:1081万
展开全部
∵PC是∠APB的平分线
∴∠APC=∠CPB
∴弧AC=弧BC
∵∠BAC=30°
∴∠ABC=30°
∴∠ACB=120°
∴∠APB=60°
设∠PAB=α,则∠PBA=120°-α
由正弦定理得
2R=AB/sin60°=2
∴PB=2R·sinα=2sinα
∴S△PAB=1/2*AB*PB*sin(120°-α)=√3*sinα*sin(120°-α)=-√3*/2[(cos120°-cos(2α-120°)]=(√3/2)*cos(2α-120°)-√3/4
∴α=60°时,S△PAB面积最大,为3√3/4
∵S△PAB=1/2AB*BC*sin30°=1/2AB*2R*sin30°*sin30°=√3/4为常量,不因P的位置改变。
∴∠PAC=90°时,四边形PACB有最大面积,为√3
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式