已知a ,b,c分别是三角形ABC三个内角A,B,C的对边,且2asin(C+π╱3)=√3乘上b
2个回答
展开全部
1.
由正弦定理得2sinAsin(C+π/3)=√3sinB
2sinA(sinCcosπ/3+cosCsinπ/3)=√3sin(A+C)
sinAsinC+√3sinAcosC=√3sinAcosC+√3cosAsinC
sinC(sinA-√3cosA)=0
sinC恒>0,因此sinA-√3cosA=0
(1/2)sinA-(√3/2)cosA=0
sin(A-π/3)=0
A=π/3
2.
a=BC,b=AC,c=AB=3,d=BD=√13,令AD=x
由余弦定理得cosA=(c²+x²-d²)/(2cx)
A=π/3,c=3,d=√13代入,整理,得x²-3x-4=0
(x+1)(x-4)=0
x=-1(舍去)或x=4
b=2x=8
S△ABC=½bcsinA
=½·4·3·sin(π/3)
=½·4·3·(√3/2)
=3√3
由正弦定理得2sinAsin(C+π/3)=√3sinB
2sinA(sinCcosπ/3+cosCsinπ/3)=√3sin(A+C)
sinAsinC+√3sinAcosC=√3sinAcosC+√3cosAsinC
sinC(sinA-√3cosA)=0
sinC恒>0,因此sinA-√3cosA=0
(1/2)sinA-(√3/2)cosA=0
sin(A-π/3)=0
A=π/3
2.
a=BC,b=AC,c=AB=3,d=BD=√13,令AD=x
由余弦定理得cosA=(c²+x²-d²)/(2cx)
A=π/3,c=3,d=√13代入,整理,得x²-3x-4=0
(x+1)(x-4)=0
x=-1(舍去)或x=4
b=2x=8
S△ABC=½bcsinA
=½·4·3·sin(π/3)
=½·4·3·(√3/2)
=3√3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:
1.
2asin(c+π/3)=√3b
由正弦定理得2sinasin(c+π/3)=√3sinb
2sina[sinccos(π/3)+coscsin(π/3)]=√3sin(a+c)
2sina[(1/2)sinc+(√3/2)cosc]=√3(sinacosc+cosasinc)
sinasinc+√3sinacosc=√3sinacosc+√3cosasinc
sinc(sina-√3cosa)=0
2sinc[(1/2)sina-(√3/2)cosa]=0
2sincsin(a-π/3)=0
c为三角形内角,sinc>0,因此只有sin(a-π/3)=0
0
评论
0
0
加载更多
1.
2asin(c+π/3)=√3b
由正弦定理得2sinasin(c+π/3)=√3sinb
2sina[sinccos(π/3)+coscsin(π/3)]=√3sin(a+c)
2sina[(1/2)sinc+(√3/2)cosc]=√3(sinacosc+cosasinc)
sinasinc+√3sinacosc=√3sinacosc+√3cosasinc
sinc(sina-√3cosa)=0
2sinc[(1/2)sina-(√3/2)cosa]=0
2sincsin(a-π/3)=0
c为三角形内角,sinc>0,因此只有sin(a-π/3)=0
0
评论
0
0
加载更多
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询