x^3+px+q=0 的求解过程

 我来答
百度网友97019f00221
2020-05-04 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.3万
采纳率:32%
帮助的人:807万
展开全部
归纳出来的形如
x^3+px+q=0的一元三次方程的求根公式的形式应该为x=a^(1/3)+b^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示a和b。方法如下:
(1)将x=a^(1/3)+b^(1/3)两边同时立方可以得到
(2)x^3=(a+b)+3(ab)^(1/3)(a^(1/3)+b^(1/3))
(3)由于x=a^(1/3)+b^(1/3),所以(2)可化为
x^3=(a+b)+3(ab)^(1/3)x,移项可得
(4)x^3-3(ab)^(1/3)x-(a+b)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知
(5)-3(ab)^(1/3)=p,-(a+b)=q,化简得
(6)a+b=-q,ab=-(p/3)^3
(7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为a和b可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即
(8)y1+y2=-(b/a),y1*y2=c/a
(9)对比(6)和(8),可令a=y1,b=y2,q=b/a,-(p/3)^3=c/a
(10)由于型为ay^2+by+c=0的一元二次方程求根公式
y1=-(b+(b^2-4ac)^(1/2))/(2a)
y2=-(b-(b^2-4ac)^(1/2))/(2a)
可化为
(11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2)
y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2)
将(9)中的a=y1,b=y2,q=b/a,-(p/3)^3=c/a代入(11)可得
(12)a=-(q/2)-((q/2)^2+(p/3)^3)^(1/2)
b=-(q/2)+((q/2)^2+(p/3)^3)^(1/2)
(13)将a,b代入x=a^(1/3)+b^(1/3)得
(14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3)

(14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了。
用其英边衣
2020-05-04 · TA获得超过3.8万个赞
知道大有可为答主
回答量:1.4万
采纳率:26%
帮助的人:678万
展开全部
我平时的做法呢就是先试,一般这样的方程总有一个比较小或是比较明显的解。先试1,2,3一般正数我最多试到5,然后试一试-1,-2,-3.假设试出的结果为a,则有x^3+px^2+qx+r=(x-a)*(x^2+bx+c).至于b和c的确定,可使用大除法。一般要是有这样的问题证明它肯定是有解的。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式