高中数列数学题,求解答过程。很急。

设等差数列{an}的前n项和为Sn。已知a4=14.S10=185.(1)求等差数列{an}的通项公式an.(2)将数列{an}中的第2项。第4项……,第2^n项按原来的... 设等差数列{an}的前n项和为Sn。已知a4=14 . S10=185. (1)求等差数列{an}的通项公式an. (2) 将数列{an}中的第2项。第4项……,第2^n项按原来的顺序排成一个新数列{bn}, 求{bn}的前n项和Tn. 展开
 我来答
冯人扶秀兰
2019-01-09 · TA获得超过3871个赞
知道大有可为答主
回答量:3157
采纳率:26%
帮助的人:214万
展开全部
第一问:因为该数列是等差数列,所以有a4=a1+3d=14········第1式
根据求和公式Sn=na1+n*(n-1)d/2

S10=10a1+45d=185······第2式
第1式和第2式联立解方程,有a1=5,d=3
所以有通项公式an=5+(n-1)*3=3n+2
第二问:根据数列{an}中的第2项,第4项……的意思,我们可以理解为b1=a1,b2=a4,b3=a8·····bn=a(2^n),我们可以写出新数列bn如下:
b1=5,b2=11,b3=26,·····bn=(3*2^n+2)所以我们整理出以下式子:
bn=3*2^n+2
b(n-1)=3*2^(n-1)+2················第1项
b(n-2)=3*2^(n-2)+2················第2项
·····
·····
·····
·····
b2=3*2^2+2····················第n-1项
b1=3*2^1+2····················第n项
然后把这个n项都加起来,这个方法叫做迭代法。
可以得出b1+b2+·····+bn=[3*2^1+2]+[3*2^2+2]+····+[3*2^(n-1)+2]
等式左边就是Tn,等式右边我们可以这样处理。
我们发现有n个2,所以可以写成2n,然后就是剩下3*2^1+3*2^2··3*2^(n-1)
接着,我们把3提取出来,有3*(2^1+2^2+·····2^n),我们发现括号内是一个等比数列,我们只要求和就可以啦。
等比数列求和=[2*(1-2^n)]/(1-2)=2*2^n-2
所以Tn=3*(2*2^n-2)+2n=3*2^(n+1)+2n-6
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式