微分中值定理证明问题已知函数f(x)在[0,1]上连续,在(0,1)上可导,f(...
微分中值定理证明问题已知函数f(x)在[0,1]上连续,在(0,1)上可导,f(0)=1,求证:在(0,1)内至少存在一点c,使得f'(c)=-f(c)/c...
微分中值定理证明问题 已知函数f(x)在[0,1]上连续,在(0,1)上可导,f(0)=1,求证:在(0,1)内至少存在一点c,使得f'(c)=-f(c)/c
展开
1个回答
展开全部
这类问题主要是构造函数,构造函数时一般可以看成微分方程的题
这道题,本身出错了,不是f(0)=1,应该是f(1)=0,
如果是f(0)=1,那么我令f(x)=1,满足题设,但f'(c)=0不等于-1/c
令F(x)=xf(x)
F(0)=0,F(1)=0
故(0,1)内至少存在一点c,有F'(c)=0
即cf'(c)+f(c)=0,即f'(c)=-f(c)/c
这道题,本身出错了,不是f(0)=1,应该是f(1)=0,
如果是f(0)=1,那么我令f(x)=1,满足题设,但f'(c)=0不等于-1/c
令F(x)=xf(x)
F(0)=0,F(1)=0
故(0,1)内至少存在一点c,有F'(c)=0
即cf'(c)+f(c)=0,即f'(c)=-f(c)/c
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |