设f(x)在[0.π]上连续,(0,π)内可导 证明存在 我来答 1个回答 #热议# 普通体检能查出癌症吗? 科创17 2022-06-06 · TA获得超过5914个赞 知道小有建树答主 回答量:2846 采纳率:100% 帮助的人:176万 我也去答题访问个人页 关注 展开全部 令g(x)=f(x)sinx,则g(0)=g(π)=0,所以根据罗尔定理,存在ξ属于(0,π),使得g'(ξ)=0,而g'(x)=f'(x)sinx+f(x)cosx,代人即得要证明的等式. 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 其他类似问题 2022-04-17 设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,试证明对任意给定的 2021-10-24 设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1),证明:存在ξ,η∈(0,1 1 2020-11-24 设f(x)在[0,1]上连续在(0,1)内可导证明至少存在一点ξ∈(0,1),使f'(ξ)=2ξ[ 8 2022-09-11 设f(x)在上连续,在[0,π]内可导,证明至少存在一点x属于(0,π),使f'(x)=-f(x)cotx 2022-07-20 设f(x)在上连续,在[0,π]内可导,证明至少存在一点x属于(0,π),使f'(x)=-f(x)cotx 2022-06-08 设f(x)在(0,1)上连续,在(0,1)内可导,且f(0)=f(1),证明存在0 2021-11-17 设f(x)在[0,π]上可导,证明在(0,π)内至少存在一点ξ,使得f‘(x)=cotξ 2022-07-06 设f(x)在[0,π]上连续,(0,π)内可导,证明存在ξ∈(0,π),使得f'(ξ)sinξ+f(ξ)cosξ=0 1 为你推荐: