求微分方程通解y''+3y'+2y=3xe^-x

 我来答
华源网络
2022-06-27 · TA获得超过5578个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:144万
展开全部
y''+3y'+2y=3xe^(-x)
特征方程r^2+3r+2=0的解为r1=-1,r2=-2
因此齐次方程y''+3y'+2y=0的通解为y1=Ae^(-x)+Be^(-2x)
常数变易法求特解,设y*=A(x)e^(-x)+B(x)e^(-2x)
A'e^(-x)+B'e^(-2x)=0
-A'e^(-x)-2B'e^(-2x)=3xe^(-x)
解得A'=3x,B'=-3xe^x
积分得A=(3/2)x^2+C1,B=(1-3x)e^x+C2,(音只不过是一个特解,可令C1=C2=0)
y*=[(3/2)x^2-3x+1]e^(-x)
原微分方程的通解为
y=y1+y*=Ae^(-x)+Be^(-2x)+[(3/2)x^2-3x+1]e^(-x)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式