等比中项:当r满足p+q=2r时,那么则有 ,即 为 与 的等比中项。
等差中项:G=(a+b)除以2
等比数列的通项公式是:
若通项公式变形为 (n∈N*),当q>0时,则可把 看作自变量n的函数,点(n, )是曲线 上的一群孤立的点。
等比求和:
①当q≠1时, 或
②当q=1时, ,记 ,则有
在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。
扩展资料:
等比数列前n项之和:
①当q≠1时, 或
②当q=1时,
在等比数列中,首项a1与公比q都不为零.
注意:上述公式中a^n表示A的n次方。
等比数列在生活中也是常常运用的。
如:银行有一种支付利息的方式---复利。
即把前一期的利息和本金加在一起算作本金,
再计算下一期的利息,也就是人们通常说的利滚利。
按照复利计算本利和的公式:本利和=本金×(1+利率)^存期