全概率公式推导
展开全部
全概率公式推导如下:
设 A1,A2,A3,A4,...,An 是样本空间的一个完备事件组。且事件 A1,…,An 两两互不相容。可用公式表示如下:A_{i}\cap A_{i} = \phi(i\ne j)。
每一次试验中,完备事件组中有且仅有一个发生。完备事件组构成样本空间的一个划分。
假设事件 A 完备事件组为 B_{1},B_{2},B_{3},…B_{n} ,则:P(A)=P(AB1)+P(AB2)+P(AB3)+…P(ABn)。根据:条件概率公式。
P(A) 可重新表示如下P(A)=P(A/B_{1})P(B_{1})+P(A/B_{2})P(B_{2})+P(A/B_{3})P(B_{3})+…+P(A/B_{n})P(B_{n}) =\sum_{i=1}^{n}{P(B_{i})P(A/B_{i})}。
全概率公式为概率论中的重要公式,它将对一复杂事件A的概率求解问题转化为了在不同情况下发生的简单事件的概率的求和问题。
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询