已知f( x)= cosxdx+ c,求不定积分?

 我来答
小小芝麻大大梦
高粉答主

2022-12-25 · 每个回答都超有意思的
知道大有可为答主
回答量:2.1万
采纳率:98%
帮助的人:949万
展开全部

∫sin2xdx=-1/2*cos2x+C。(C为任意常数)。

解答过程如下:

∫sin2xdx

=1/2∫sin2xd2x

=-1/2*cos2x+C(C为任意常数)

求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。

扩展资料:

分部积分:

(uv)'=u'v+uv',得:u'v=(uv)'-uv'。

两边积分得:∫ u'v dx=∫ (uv)' dx - ∫ uv' dx。

即:∫ u'v dx = uv - ∫ uv' d,这就是分部积分公式。

也可简写为:∫ v du = uv - ∫ u dv。

常用积分公式:

1)∫0dx=c 

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c

9)∫1/(sinx)^2dx=-cotx+c

10)∫1/√(1-x^2) dx=arcsinx+c

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式