变上限积分怎么求导?
展开全部
变上限积分求导,不是牛顿-莱布尼兹公式。
首先你要知道求导公式:F(x)=∫(上限x,下限a)f(t)dt,则F'(x)=f(x),这个是基本公式
若F(x)=x∫(上限x,下限a)f(t)dt,则F(x)可以看作两个函数相乘,一个是x,另一个是∫(上限x,下限a)f(t)dt,因此F(x)求导的时候按照乘积求导的法则来求,记 ∫(上限x,下限a)f(t)dt=u(x)
F'(x)=(xu(x))'=(x)'u(x)+xu'(x)=u(x)+xu'(x)=∫(上限x,下限a)f(t)dt+xf(x)
结果有两项:前一项是x求导,u(x)不变,后一项是x不变,u(x)求导。
首先你要知道求导公式:F(x)=∫(上限x,下限a)f(t)dt,则F'(x)=f(x),这个是基本公式
若F(x)=x∫(上限x,下限a)f(t)dt,则F(x)可以看作两个函数相乘,一个是x,另一个是∫(上限x,下限a)f(t)dt,因此F(x)求导的时候按照乘积求导的法则来求,记 ∫(上限x,下限a)f(t)dt=u(x)
F'(x)=(xu(x))'=(x)'u(x)+xu'(x)=u(x)+xu'(x)=∫(上限x,下限a)f(t)dt+xf(x)
结果有两项:前一项是x求导,u(x)不变,后一项是x不变,u(x)求导。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询