多元函数的偏导数存在的充要条件是什么?
1个回答
展开全部
多元函数关于在x0处的偏导数存在的充要条件就是。
(t趋于0)lim [f(x0+t)-f(x0)]/t存在,对于其他的自变量也是一样的道理。多元函数可偏导与连续是非必要亦非充分关系。
例如:z = (x+1) |y| 在(0,0)点,对x 的偏导数存在,fx'(0,0) = 0,
对y 的偏导数不存在,因为 fy'+(0,0) = 1,fy'-(0,0) = -1
此时,需要说明该函数“对x 的偏导数存在,对y 的偏导数不存在”.
拓展资料:
在数学中,一个多变量的函数的偏导数,就是它关于其中一个变量的导数而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。偏导数在向量分析和微分几何中是很有用的。
在一元函数中,导数就是函数的变化率。对于二元函数研究它的“变化率”,由于自变量多了一个,情况就要复杂的多。
在 xOy 平面内,当动点由 P(x0,y0) 沿不同方向变化时,函数 f(x,y) 的变化快慢一般说来是不同的,因此就需要研究 f(x,y) 在 (x0,y0) 点处沿不同方向的变化率。
参考资料:百度百科-偏导数
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询