y= arcsinx的导数怎么求?

 我来答
科创17
2023-04-05 · TA获得超过5933个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:179万
展开全部
arcsinx的导数是:y'=1/cosy=1/√[1-(siny)]=1/√(1-x),此为隐函数求导。推导过程:y=arcsinx,y'=1/√(1-x),反函数的导数:y=arcsinx,那么,siny=x,求导得到cosy*y'=1。

扩展资料

arcsinx导数的求解:方法1:先把隐函数转化成显函数,再利用显函数求导的方法求导;方法2:隐函数左右两边对x求导(但要注意把y看作x的函数);方法3:利用一阶微分形式不变的'性质分别对x和y求导,再通过移项求得的值;方法4:把n元隐函数看作(n+1)函数,通过多元函数的偏导数的商求得n元隐函数的导数。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式