下列正项级数收敛的是,要详细过程
2个回答
展开全部
B收敛因为1-cos1/n和 (1/n)²/2等价而Σ(1/n)²/2 收敛所以原级数收敛。
有无穷多项为正,无穷多项为负的级数称为变号级数,其中最简单的是形如∑[(-1)^(n-1)]*un(un>0)的级数,称之为交错级数。判别这类级数收敛的基本方法是莱布尼兹判别法 :若un ≥un+1 ,对每一n∈N成立。
并且当n→∞时lim un=0,则交错级数收敛。例如∑[(-1)^(n-1)]*(1/n)收敛。对于一般的变号级数如果有∑|un|收敛,则称变号级数绝对收敛。如果只有 ∑un收敛,但是∑|un|发散,则称变号级数条件收敛。例如∑[(-1)^(n-1)]*(1/n^2)绝对收敛,而∑[(-1)^(n-1)]*(1/n)只是条件收敛。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询