如图,D为△ABC的边BC上的一点,且CD=AB,∠BDA=∠BAD,AE是△ABD的中线。求证:AC=2AE.

百度网友5a999cf
2013-11-02 · TA获得超过1126个赞
知道小有建树答主
回答量:347
采纳率:0%
帮助的人:288万
展开全部
延长AE到F,使EF=AE,连接DF
∵AE是△ABD的中线
∴BE=ED
在△ABE与△FDE中
BE=DE
∠AEB=∠DEF(对顶角相等)
AE=EF
∴△ABE≌△FDE(SAS)
∴AB=DF,∠BAE=∠EFD
∵∠ADB是△ADC的外角
∴∠DAC=∠ACD=∠ADB=∠BAD
∴∠BAE+∠EAD=∠BAD
∠BAE=∠EFD
∴∠EFD+∠EAD=∠DAC=∠ACD
∴∠ADF=∠ADC
在△ADF与△ADC中
AD=AD
∠ADF=∠ADC
FD=DC
∴△ADF≌△ADC(SAS)
∴AF=AC
∵AF=AE+EF
AE=EF
∴AC=2AE
请采纳答题不易
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式