已知a,b,c是正数,a+b+c=1,证明(a+1/a)^2+(b+1/b)^2+(c+1/c)
已知a,b,c是正数,a+b+c=1,证明(a+1/a)^2+(b+1/b)^2+(c+1/c)^2≥100/3...
已知a,b,c是正数,a+b+c=1,证明(a+1/a)^2+(b+1/b)^2+(c+1/c)^2≥100/3
展开
1个回答
展开全部
证明如下:
[(a+1/a)^2+(b+1/b)^2+(c+1/c)^2]*(1+1+1)>=(a+b+c+1/a+1/b+1/c)^2 (柯西不等式)
(a+1/a)^2+(b+1/b)^2+(c+1/c)^2 >=[(1+1/a+1/b+1/c)^2]/3
因为 3/(1/a+1/b+1/c)<=(a+b+c)/3=1/3 (基本不等式)
所以 1/a+1/b+1/c>=9
所以 (a+1/a)^2+(b+1/b)^2+(c+1/c)^2 >=[(1+9)^2]/3=100/3
如果满意请点击右上角评价点【满意】即可~~
你的采纳是我前进的动力~~
答题不易..祝你开心~(*^__^*) 嘻嘻……
[(a+1/a)^2+(b+1/b)^2+(c+1/c)^2]*(1+1+1)>=(a+b+c+1/a+1/b+1/c)^2 (柯西不等式)
(a+1/a)^2+(b+1/b)^2+(c+1/c)^2 >=[(1+1/a+1/b+1/c)^2]/3
因为 3/(1/a+1/b+1/c)<=(a+b+c)/3=1/3 (基本不等式)
所以 1/a+1/b+1/c>=9
所以 (a+1/a)^2+(b+1/b)^2+(c+1/c)^2 >=[(1+9)^2]/3=100/3
如果满意请点击右上角评价点【满意】即可~~
你的采纳是我前进的动力~~
答题不易..祝你开心~(*^__^*) 嘻嘻……
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询