已知函数f(x)=2√3sinxcosx-2cos²x+1 问函数的最小正周期和单调递增区间?
3个回答
展开全部
f(x)=2√3sinxcosx+1-2(sinx)^2=√3sin2x+cos2x=2sin(2x+π/6)所以最小正周期=2π/2=π-π/2+2kπ<=2x+π/6<=π/2+2kπ时递增,所以递增区间为[-π/3+kπ,π/6+kπ]
∵f(x)=sinxcosx+sin²x=0.5sin2x+0.5(1-cos²x)=0.5√2sin(2x-π/4)+0.5
∴最小正周期T=2π/2=π
∴当2x-π/4∈[-π/2+2kπ,π/2+2kπ](K∈Z)时f(x)单调递增
解得
x∈[-π/8+kπ,3π/8+kπ],(K∈Z)
∴f(x)单调递增区间[-π/8+kπ,3π/8+kπ],(K∈Z)
∵f(x)=sinxcosx+sin²x=0.5sin2x+0.5(1-cos²x)=0.5√2sin(2x-π/4)+0.5
∴最小正周期T=2π/2=π
∴当2x-π/4∈[-π/2+2kπ,π/2+2kπ](K∈Z)时f(x)单调递增
解得
x∈[-π/8+kπ,3π/8+kπ],(K∈Z)
∴f(x)单调递增区间[-π/8+kπ,3π/8+kπ],(K∈Z)
2014-05-20
展开全部
1、f(x)=2√3sinxcosx+1-2sin方x
=√3sin2x + cos2x
=2sin(2x+π/6)
最小正周期T=2π/2=π
单调递增区间 -π/2+2kπ<2x+π/6< π/2+2kπ
解得:π/3+kπ < x< π/6+kπ
2、f(x)=2sin(2x+π/6),纵坐标不变,横坐标缩短到原来的1/2,图像再向右平移π/6个单位
g(x)=2sin(2x*1/2+π/6+π/6)
=2sin(x+π/3)
0≤x≤π/8
π/3≤x+π/3≤π/8+π/3,即π/3≤x+π/3≤11π/24
最大值:2sinπ/2=2,最小值:2sin(π/3)=根号3
=√3sin2x + cos2x
=2sin(2x+π/6)
最小正周期T=2π/2=π
单调递增区间 -π/2+2kπ<2x+π/6< π/2+2kπ
解得:π/3+kπ < x< π/6+kπ
2、f(x)=2sin(2x+π/6),纵坐标不变,横坐标缩短到原来的1/2,图像再向右平移π/6个单位
g(x)=2sin(2x*1/2+π/6+π/6)
=2sin(x+π/3)
0≤x≤π/8
π/3≤x+π/3≤π/8+π/3,即π/3≤x+π/3≤11π/24
最大值:2sinπ/2=2,最小值:2sin(π/3)=根号3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询