已知圆x2+y2+x-6y+m=0和直线x+2y-3=0交于不同的P,Q两点,若OP⊥OQ(O为坐标原点),则m=______
已知圆x2+y2+x-6y+m=0和直线x+2y-3=0交于不同的P,Q两点,若OP⊥OQ(O为坐标原点),则m=______....
已知圆x2+y2+x-6y+m=0和直线x+2y-3=0交于不同的P,Q两点,若OP⊥OQ(O为坐标原点),则m=______.
展开
2个回答
推荐于2016-01-02 · 知道合伙人教育行家
关注
展开全部
将圆方程化简为标准式有:
[x+(1/2)]^2+(y-3)^2=(37-4m)/4
所以,圆心坐标为(-1/2,3)
联立直线与圆方程得到:
x^2+x+y^2-6y+m=0
x+2y-3=0
==> (2y-3)^2-(2y-3)+y^2-6y+m=0
==> 4y^2-12y+9-2y+3+y^2-6y+m=0
==> 5y^2-20y+(m+12)=0
==> y1+y2=4,y1y2=(m+12)/5
==> x1x2=(-2y1+3)(-2y2+3)=4y1y2-6(y1+y2)+9=4(m+12)/5-15
已知OP⊥OQ
则,Kop*Koq=-1
即:(y1/x1)*(y2/x2)=-1
==> y1y2+x1x2=0
==> (m+12)/5+4(m+12)/5-15=0
==> m+12-15=0
==> m=3
[x+(1/2)]^2+(y-3)^2=(37-4m)/4
所以,圆心坐标为(-1/2,3)
联立直线与圆方程得到:
x^2+x+y^2-6y+m=0
x+2y-3=0
==> (2y-3)^2-(2y-3)+y^2-6y+m=0
==> 4y^2-12y+9-2y+3+y^2-6y+m=0
==> 5y^2-20y+(m+12)=0
==> y1+y2=4,y1y2=(m+12)/5
==> x1x2=(-2y1+3)(-2y2+3)=4y1y2-6(y1+y2)+9=4(m+12)/5-15
已知OP⊥OQ
则,Kop*Koq=-1
即:(y1/x1)*(y2/x2)=-1
==> y1y2+x1x2=0
==> (m+12)/5+4(m+12)/5-15=0
==> m+12-15=0
==> m=3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询