已知数列{an}的前n项和为Sn,a1=1,且nan+1=2Sn,数列{bn}满足b1=12,b2=14,对任意n∈N*.都有b2n+1=bn?
已知数列{an}的前n项和为Sn,a1=1,且nan+1=2Sn,数列{bn}满足b1=12,b2=14,对任意n∈N*.都有b2n+1=bn?bn+2.(Ⅰ)求数列{a...
已知数列{an}的前n项和为Sn,a1=1,且nan+1=2Sn,数列{bn}满足b1=12,b2=14,对任意n∈N*.都有b2n+1=bn?bn+2.(Ⅰ)求数列{an}、{bn}的通项公式;(Ⅱ)令Tn=a1b1+a2b2+…+anbn,若对任意的n∈N*,不等式λnTn+2bnSn<2(λn+3bn)恒成立,试求实数λ的取值范围.
展开
1个回答
展开全部
(Ⅰ)∵nan+1=2Sn,∴(n-1)an=2Sn-1(n≥2),两式相减得,nan+1-(n-1)an=2an,
∴nan+1=(n+1)an=,即
=
,
∴an=a1×
×…×
=n(n≥2),
a1=1满足上式,故数列{an}的通项公式an=n(n∈N*).
在数列{bn}中,由
=bn?bn+2,b1=
,b2=
,知数列{bn}是等比数列,首项、公比均为
,
∴数列{bn}的通项公式bn=(
)n;
(Ⅱ)∵Tn=a1b1+a2b2+…+anbn=
+2×(
)2+…+n×(
)n ①
∴
Tn=(
)2+2×(
)3+…+(n-1)×(
)n+n×(
)n+1 ②
由①-②,得
Tn=
+(
)2+(
)3+…+(
∴nan+1=(n+1)an=,即
an+1 |
an |
n+1 |
n |
∴an=a1×
a2 |
a1 |
an |
an?1 |
a1=1满足上式,故数列{an}的通项公式an=n(n∈N*).
在数列{bn}中,由
b | 2 n+1 |
1 |
2 |
1 |
4 |
1 |
2 |
∴数列{bn}的通项公式bn=(
1 |
2 |
(Ⅱ)∵Tn=a1b1+a2b2+…+anbn=
1 |
2 |
1 |
2 |
1 |
2 |
∴
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
由①-②,得
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |